Norm continuity of weakly quasi-continuous mappings
Colloquium Mathematicum, Tome 122 (2011) no. 1, pp. 83-91
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal{Q}$ be the class of
Banach spaces $X$ for which every weakly quasi-continuous mapping
$f: A \rightarrow X$ defined on an $\alpha$-favorable space $A$ is
norm continuous at the points of a dense $G_\delta$ subset of $A$.
We will show that this class is stable under $c_0$-sums and
$\ell^p$-sums of Banach spaces for $1 \leq p \infty$.
Keywords:
mathcal class banach spaces which every weakly quasi continuous mapping rightarrow defined alpha favorable space norm continuous points dense delta subset class stable under sums ell p sums banach spaces leq infty
Affiliations des auteurs :
Alireza Kamel Mirmostafaee  1
@article{10_4064_cm122_1_8,
author = {Alireza Kamel Mirmostafaee},
title = {Norm continuity of weakly quasi-continuous mappings},
journal = {Colloquium Mathematicum},
pages = {83--91},
year = {2011},
volume = {122},
number = {1},
doi = {10.4064/cm122-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-1-8/}
}
Alireza Kamel Mirmostafaee. Norm continuity of weakly quasi-continuous mappings. Colloquium Mathematicum, Tome 122 (2011) no. 1, pp. 83-91. doi: 10.4064/cm122-1-8
Cité par Sources :