Finite mutation classes of coloured quivers
Colloquium Mathematicum, Tome 122 (2011) no. 1, pp. 53-58.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the mutation class of a coloured quiver arising from an $m$-cluster tilting object associated with a finite-dimensional hereditary algebra $H$, is finite if and only if $H$ is of finite or tame representation type, or it has at most two simples. This generalizes a result known for cluster categories.
DOI : 10.4064/cm122-1-5
Keywords: mutation class coloured quiver arising m cluster tilting object associated finite dimensional hereditary algebra finite only finite tame representation type has simples generalizes result known cluster categories

Hermund André Torkildsen 1

1 Department of Mathematical Sciences Norwegian University of Science and Technology 7491 Trondheim, Norway
@article{10_4064_cm122_1_5,
     author = {Hermund Andr\'e  Torkildsen},
     title = {Finite mutation classes of coloured quivers},
     journal = {Colloquium Mathematicum},
     pages = {53--58},
     publisher = {mathdoc},
     volume = {122},
     number = {1},
     year = {2011},
     doi = {10.4064/cm122-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-1-5/}
}
TY  - JOUR
AU  - Hermund André  Torkildsen
TI  - Finite mutation classes of coloured quivers
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 53
EP  - 58
VL  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm122-1-5/
DO  - 10.4064/cm122-1-5
LA  - en
ID  - 10_4064_cm122_1_5
ER  - 
%0 Journal Article
%A Hermund André  Torkildsen
%T Finite mutation classes of coloured quivers
%J Colloquium Mathematicum
%D 2011
%P 53-58
%V 122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm122-1-5/
%R 10.4064/cm122-1-5
%G en
%F 10_4064_cm122_1_5
Hermund André  Torkildsen. Finite mutation classes of coloured quivers. Colloquium Mathematicum, Tome 122 (2011) no. 1, pp. 53-58. doi : 10.4064/cm122-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm122-1-5/

Cité par Sources :