Finite mutation classes of coloured quivers
Colloquium Mathematicum, Tome 122 (2011) no. 1, pp. 53-58
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the mutation class of a coloured quiver arising from an $m$-cluster tilting object associated with a finite-dimensional hereditary algebra $H$, is finite if and only if $H$ is of finite or tame representation type, or it has at most two simples. This generalizes a result known for cluster categories.
Keywords:
mutation class coloured quiver arising m cluster tilting object associated finite dimensional hereditary algebra finite only finite tame representation type has simples generalizes result known cluster categories
Affiliations des auteurs :
Hermund André Torkildsen 1
@article{10_4064_cm122_1_5,
author = {Hermund Andr\'e Torkildsen},
title = {Finite mutation classes of coloured quivers},
journal = {Colloquium Mathematicum},
pages = {53--58},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {2011},
doi = {10.4064/cm122-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-1-5/}
}
Hermund André Torkildsen. Finite mutation classes of coloured quivers. Colloquium Mathematicum, Tome 122 (2011) no. 1, pp. 53-58. doi: 10.4064/cm122-1-5
Cité par Sources :