Translative packing of a square with
sequences of squares
Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 273-280
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $S$ be a square and let $S'$ be a square of unit area with a diagonal parallel to a side of $S$. Any (finite or infinite) sequence of homothetic copies of $S$ whose total area does not exceed $ { 4 \over 9}$ can be packed translatively into $S'$.
Keywords:
square square unit area diagonal parallel side finite infinite sequence homothetic copies whose total area does exceed packed translatively
Affiliations des auteurs :
Janusz Januszewski  1
@article{10_4064_cm121_2_9,
author = {Janusz Januszewski},
title = {Translative packing of a square with
sequences of squares},
journal = {Colloquium Mathematicum},
pages = {273--280},
year = {2010},
volume = {121},
number = {2},
doi = {10.4064/cm121-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-9/}
}
Janusz Januszewski. Translative packing of a square with sequences of squares. Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 273-280. doi: 10.4064/cm121-2-9
Cité par Sources :