Almost Prüfer $v$-multiplication domains and the ring $D+XD_S[X]$
Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 239-247.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper is a continuation of the investigation of almost Prüfer $v$-multiplication domains (APVMDs) begun by Li [Algebra Colloq., to appear]. We show that an integral domain $D$ is an APVMD if and only if $D$ is a locally APVMD and $D$ is well behaved. We also prove that $D$ is an APVMD if and only if the integral closure $ \overline {D}$ of $D$ is a PVMD, $D\subseteq \overline {D}$ is a root extension and $D$ is $t$-linked under $ \overline {D}$. We introduce the notion of an almost $t$-splitting set. $D^{(S)}$ denotes the ring $D+XD_S[X]$, where $S$ is a multiplicatively closed subset of $D$. We show that the ring $D^{(S)}$ is an APVMD if and only if $D^{(S)}$ is well behaved, $D$ and $D_S[X]$ are APVMDs, and $S$ is an almost $t$-splitting set in $D$.
DOI : 10.4064/cm121-2-6
Mots-clés : paper continuation investigation almost fer v multiplication domains apvmds begun algebra colloq appear integral domain apvmd only locally apvmd behaved prove apvmd only integral closure overline pvmd subseteq overline root extension t linked under overline introduce notion almost t splitting set denotes ring where multiplicatively closed subset ring apvmd only behaved apvmds almost t splitting set

Qing Li 1

1 College of Computer Science and Technology Southwest University for Nationalities Chengdu 610041, P.R. China
@article{10_4064_cm121_2_6,
     author = {Qing Li},
     title = {Almost {Pr\"ufer} $v$-multiplication domains and
 the ring $D+XD_S[X]$},
     journal = {Colloquium Mathematicum},
     pages = {239--247},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {2010},
     doi = {10.4064/cm121-2-6},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-6/}
}
TY  - JOUR
AU  - Qing Li
TI  - Almost Prüfer $v$-multiplication domains and
 the ring $D+XD_S[X]$
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 239
EP  - 247
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-6/
DO  - 10.4064/cm121-2-6
LA  - de
ID  - 10_4064_cm121_2_6
ER  - 
%0 Journal Article
%A Qing Li
%T Almost Prüfer $v$-multiplication domains and
 the ring $D+XD_S[X]$
%J Colloquium Mathematicum
%D 2010
%P 239-247
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-6/
%R 10.4064/cm121-2-6
%G de
%F 10_4064_cm121_2_6
Qing Li. Almost Prüfer $v$-multiplication domains and
 the ring $D+XD_S[X]$. Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 239-247. doi : 10.4064/cm121-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-6/

Cité par Sources :