New Calderón–Zygmund decomposition for Sobolev functions
Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 153-177.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a new Calderón–Zygmund decomposition for Sobolev spaces on a doubling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincaré inequalities.
DOI : 10.4064/cm121-2-1
Keywords: calder zygmund decomposition sobolev spaces doubling riemannian manifold hypotheses weaker those already known decomposition which classical poincar inequalities

N. Badr 1 ; F. Bernicot 2

1 Université de Lyon; CNRS Université Lyon 1 Institut Camille Jordan 43 boulevard du 11 Novembre 1918 F-69622 Villeurbanne Cedex, France
2 Université de Paris-Sud F-91405 Orsay Cedex, France
@article{10_4064_cm121_2_1,
     author = {N. Badr and F. Bernicot},
     title = {New {Calder\'on{\textendash}Zygmund} decomposition
 for {Sobolev} functions},
     journal = {Colloquium Mathematicum},
     pages = {153--177},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {2010},
     doi = {10.4064/cm121-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-1/}
}
TY  - JOUR
AU  - N. Badr
AU  - F. Bernicot
TI  - New Calderón–Zygmund decomposition
 for Sobolev functions
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 153
EP  - 177
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-1/
DO  - 10.4064/cm121-2-1
LA  - en
ID  - 10_4064_cm121_2_1
ER  - 
%0 Journal Article
%A N. Badr
%A F. Bernicot
%T New Calderón–Zygmund decomposition
 for Sobolev functions
%J Colloquium Mathematicum
%D 2010
%P 153-177
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-1/
%R 10.4064/cm121-2-1
%G en
%F 10_4064_cm121_2_1
N. Badr; F. Bernicot. New Calderón–Zygmund decomposition
 for Sobolev functions. Colloquium Mathematicum, Tome 121 (2010) no. 2, pp. 153-177. doi : 10.4064/cm121-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm121-2-1/

Cité par Sources :