Dynamics of commuting homeomorphisms of chainable continua
Colloquium Mathematicum, Tome 121 (2010) no. 1, pp. 63-77.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A chainable continuum, $X$, and homeomorphisms, $p,q:X\to X$, are constructed with the following properties: (1) $p\circ q=q\circ p$, (2) $p,q$ have simple dynamics, (3) $p\circ q$ is a positively continuum-wise fully expansive homeomorphism that has positive entropy and is chaotic in the sense of Devaney and in the sense of Li and Yorke.
DOI : 10.4064/cm121-1-6
Keywords: chainable continuum homeomorphisms constructed following properties circ circ have simple dynamics circ positively continuum wise fully expansive homeomorphism has positive entropy chaotic sense devaney sense yorke

Christopher Mouron 1

1 Department of Mathematics and Computer Science Rhodes College Memphis, TN 38112, U.S.A.
@article{10_4064_cm121_1_6,
     author = {Christopher Mouron},
     title = {Dynamics of commuting homeomorphisms of chainable continua},
     journal = {Colloquium Mathematicum},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {121},
     number = {1},
     year = {2010},
     doi = {10.4064/cm121-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-6/}
}
TY  - JOUR
AU  - Christopher Mouron
TI  - Dynamics of commuting homeomorphisms of chainable continua
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 63
EP  - 77
VL  - 121
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-6/
DO  - 10.4064/cm121-1-6
LA  - en
ID  - 10_4064_cm121_1_6
ER  - 
%0 Journal Article
%A Christopher Mouron
%T Dynamics of commuting homeomorphisms of chainable continua
%J Colloquium Mathematicum
%D 2010
%P 63-77
%V 121
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-6/
%R 10.4064/cm121-1-6
%G en
%F 10_4064_cm121_1_6
Christopher Mouron. Dynamics of commuting homeomorphisms of chainable continua. Colloquium Mathematicum, Tome 121 (2010) no. 1, pp. 63-77. doi : 10.4064/cm121-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-6/

Cité par Sources :