Feuilletage canonique sur le fibré de Weil
Colloquium Mathematicum, Tome 121 (2010) no. 1, pp. 17-23.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let be $M$ a smooth manifold, $A$ a local algebra and $M^{A}$ a manifold of infinitely near points on $M$ of kind $A$. We build the canonical foliation on $M^{A}$ and we show that the canonical foliation on the tangent bundle $TM $ is the foliation defined by its canonical field.
DOI : 10.4064/cm121-1-2
Mots-clés : smooth manifold local algebra manifold infinitely near points kind build canonical foliation canonical foliation tangent bundle foliation defined its canonical field

Basile Guy Richard Bossoto 1

1 Département de Mathématiques Faculté des Sciences Université Marien Ngouabi BP. 69, Brazzaville, Congo
@article{10_4064_cm121_1_2,
     author = {Basile Guy Richard Bossoto},
     title = {Feuilletage canonique sur le fibr\'e de {Weil}},
     journal = {Colloquium Mathematicum},
     pages = {17--23},
     publisher = {mathdoc},
     volume = {121},
     number = {1},
     year = {2010},
     doi = {10.4064/cm121-1-2},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-2/}
}
TY  - JOUR
AU  - Basile Guy Richard Bossoto
TI  - Feuilletage canonique sur le fibré de Weil
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 17
EP  - 23
VL  - 121
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-2/
DO  - 10.4064/cm121-1-2
LA  - fr
ID  - 10_4064_cm121_1_2
ER  - 
%0 Journal Article
%A Basile Guy Richard Bossoto
%T Feuilletage canonique sur le fibré de Weil
%J Colloquium Mathematicum
%D 2010
%P 17-23
%V 121
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-2/
%R 10.4064/cm121-1-2
%G fr
%F 10_4064_cm121_1_2
Basile Guy Richard Bossoto. Feuilletage canonique sur le fibré de Weil. Colloquium Mathematicum, Tome 121 (2010) no. 1, pp. 17-23. doi : 10.4064/cm121-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-2/

Cité par Sources :