Divergence of general operators on sets of measure zero
Colloquium Mathematicum, Tome 121 (2010) no. 1, pp. 113-119.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider sequences of linear operators $U_n$ with a localization property. It is proved that for any set $E$ of measure zero there exists a set $G$ for which $U_n{\mathbb I}_G(x)$ diverges at each point $x\in E$. This result is a generalization of analogous theorems known for the Fourier sum operators with respect to different orthogonal systems.
DOI : 10.4064/cm121-1-10
Keywords: consider sequences linear operators localization property proved set measure zero there exists set which mathbb diverges each point result generalization analogous theorems known fourier sum operators respect different orthogonal systems

G. A. Karagulyan 1

1 Institute of Mathematics of Armenian National Academy of Sciences Baghramian Ave. 24b 0019 Yerevan, Armenia
@article{10_4064_cm121_1_10,
     author = {G. A. Karagulyan},
     title = {Divergence of general operators on sets of measure zero},
     journal = {Colloquium Mathematicum},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {121},
     number = {1},
     year = {2010},
     doi = {10.4064/cm121-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-10/}
}
TY  - JOUR
AU  - G. A. Karagulyan
TI  - Divergence of general operators on sets of measure zero
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 113
EP  - 119
VL  - 121
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-10/
DO  - 10.4064/cm121-1-10
LA  - en
ID  - 10_4064_cm121_1_10
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%T Divergence of general operators on sets of measure zero
%J Colloquium Mathematicum
%D 2010
%P 113-119
%V 121
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-10/
%R 10.4064/cm121-1-10
%G en
%F 10_4064_cm121_1_10
G. A. Karagulyan. Divergence of general operators on sets of measure zero. Colloquium Mathematicum, Tome 121 (2010) no. 1, pp. 113-119. doi : 10.4064/cm121-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm121-1-10/

Cité par Sources :