Finite-dimensional twisted group algebras of
semi-wild representation type
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 277-298
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a finite group, $K$ a field of characteristic $p>0$, and $K^\lambda G$ the twisted group algebra of $G$ over $K$ with a $2$-cocycle $\lambda \in Z^2(G,K^*)$. We give necessary and sufficient conditions for $K^\lambda G$ to be of semi-wild representation type in the sense of Drozd. We also introduce the concept of projective $K$-representation type for a finite group (tame, semi-wild, purely semi-wild) and we exhibit finite groups of each type.
Keywords:
finite group field characteristic lambda twisted group algebra cocycle lambda * necessary sufficient conditions lambda semi wild representation type sense drozd introduce concept projective k representation type finite group tame semi wild purely semi wild exhibit finite groups each type
Affiliations des auteurs :
Leonid F. Barannyk 1
@article{10_4064_cm120_2_8,
author = {Leonid F. Barannyk},
title = {Finite-dimensional twisted group algebras of
semi-wild representation type},
journal = {Colloquium Mathematicum},
pages = {277--298},
year = {2010},
volume = {120},
number = {2},
doi = {10.4064/cm120-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-8/}
}
TY - JOUR AU - Leonid F. Barannyk TI - Finite-dimensional twisted group algebras of semi-wild representation type JO - Colloquium Mathematicum PY - 2010 SP - 277 EP - 298 VL - 120 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-8/ DO - 10.4064/cm120-2-8 LA - en ID - 10_4064_cm120_2_8 ER -
Leonid F. Barannyk. Finite-dimensional twisted group algebras of semi-wild representation type. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 277-298. doi: 10.4064/cm120-2-8
Cité par Sources :