Automorphisms of the algebra of operators in ${\mathbb L}^p$ preserving conditioning
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 263-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\alpha$ be an isometric automorphism of the algebra ${\mathbb B}_p$ of bounded linear operators in ${\mathbb L}^p[0, 1]$ $(p\geq 1)$. Then $\alpha$ transforms conditional expectations into conditional expectations if and only if $\alpha$ is induced by a measure preserving isomorphism of $[0, 1]$.
DOI : 10.4064/cm120-2-6
Keywords: alpha isometric automorphism algebra mathbb bounded linear operators mathbb geq alpha transforms conditional expectations conditional expectations only alpha induced measure preserving isomorphism

Ryszard Jajte 1

1 Faculty of Mathematics and Computer Science University of /Lódź Banacha 22 90-238 /Lódź, Poland
@article{10_4064_cm120_2_6,
     author = {Ryszard Jajte},
     title = {Automorphisms of the algebra of operators
 in ${\mathbb L}^p$ preserving conditioning},
     journal = {Colloquium Mathematicum},
     pages = {263--266},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {2010},
     doi = {10.4064/cm120-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-6/}
}
TY  - JOUR
AU  - Ryszard Jajte
TI  - Automorphisms of the algebra of operators
 in ${\mathbb L}^p$ preserving conditioning
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 263
EP  - 266
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-6/
DO  - 10.4064/cm120-2-6
LA  - en
ID  - 10_4064_cm120_2_6
ER  - 
%0 Journal Article
%A Ryszard Jajte
%T Automorphisms of the algebra of operators
 in ${\mathbb L}^p$ preserving conditioning
%J Colloquium Mathematicum
%D 2010
%P 263-266
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-6/
%R 10.4064/cm120-2-6
%G en
%F 10_4064_cm120_2_6
Ryszard Jajte. Automorphisms of the algebra of operators
 in ${\mathbb L}^p$ preserving conditioning. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 263-266. doi : 10.4064/cm120-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-6/

Cité par Sources :