Minkowskian rhombi and squares inscribed in convex Jordan curves
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 249-261.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that any convex Jordan curve in a normed plane admits an inscribed Minkowskian square. In addition we prove that no two different Minkowskian rhombi with the same direction of one diagonal can be inscribed in the same strictly convex Jordan curve.
DOI : 10.4064/cm120-2-5
Keywords: convex jordan curve normed plane admits inscribed minkowskian square addition prove different minkowskian rhombi direction diagonal inscribed strictly convex jordan curve

Horst Martini 1 ; Senlin Wu 2

1 Faculty of Mathematics TU Chemnitz 09107 Chemnitz, Germany
2 Department of Applied Mathematics Harbin University of Science and Technology 150080 Harbin, China
@article{10_4064_cm120_2_5,
     author = {Horst Martini and Senlin Wu},
     title = {Minkowskian rhombi and squares
 inscribed in convex {Jordan} curves},
     journal = {Colloquium Mathematicum},
     pages = {249--261},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {2010},
     doi = {10.4064/cm120-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-5/}
}
TY  - JOUR
AU  - Horst Martini
AU  - Senlin Wu
TI  - Minkowskian rhombi and squares
 inscribed in convex Jordan curves
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 249
EP  - 261
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-5/
DO  - 10.4064/cm120-2-5
LA  - en
ID  - 10_4064_cm120_2_5
ER  - 
%0 Journal Article
%A Horst Martini
%A Senlin Wu
%T Minkowskian rhombi and squares
 inscribed in convex Jordan curves
%J Colloquium Mathematicum
%D 2010
%P 249-261
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-5/
%R 10.4064/cm120-2-5
%G en
%F 10_4064_cm120_2_5
Horst Martini; Senlin Wu. Minkowskian rhombi and squares
 inscribed in convex Jordan curves. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 249-261. doi : 10.4064/cm120-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-5/

Cité par Sources :