Inductive dimensions modulo simplicial complexes and $ANR$-compacta
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 223-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce and investigate inductive dimensions
${\cal K}\hbox{-}\mathop{\rm Ind} $ and ${\cal L}\hbox{-}\mathop{\rm Ind} $ for classes ${\cal K}$ of
finite simplicial complexes and classes ${\cal L}$ of $ANR$-compacta (if ${\cal K}$
consists of the 0-sphere only, then
the ${\cal K}\hbox{-}\mathop{\rm Ind} $ dimension is identical with the classical
large inductive dimension Ind). We compare $K\hbox{-}\mathop{\rm Ind} $ to
$K\hbox{-}\mathop{\rm Ind} $ introduced by the author [Mat. Vesnik 61 (2009)]. In particular, for every complex $K$ such that $K \ast K$ is non-contractible, we construct a compact Hausdorff space $X$ with $K\hbox{-}\mathop{\rm Ind} X$ not equal to $K\hbox{-}{\rm dim}\, X$.
Keywords:
introduce investigate inductive dimensions cal hbox mathop ind cal hbox mathop ind classes cal finite simplicial complexes classes cal anr compacta cal consists sphere only cal hbox mathop ind dimension identical classical large inductive dimension ind compare hbox mathop ind hbox mathop ind introduced author mat vesnik particular every complex ast non contractible construct compact hausdorff space hbox mathop ind equal hbox dim
Affiliations des auteurs :
V. V. Fedorchuk 1
@article{10_4064_cm120_2_4,
author = {V. V. Fedorchuk},
title = {Inductive dimensions modulo simplicial complexes and $ANR$-compacta},
journal = {Colloquium Mathematicum},
pages = {223--247},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {2010},
doi = {10.4064/cm120-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-4/}
}
TY - JOUR AU - V. V. Fedorchuk TI - Inductive dimensions modulo simplicial complexes and $ANR$-compacta JO - Colloquium Mathematicum PY - 2010 SP - 223 EP - 247 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-4/ DO - 10.4064/cm120-2-4 LA - en ID - 10_4064_cm120_2_4 ER -
V. V. Fedorchuk. Inductive dimensions modulo simplicial complexes and $ANR$-compacta. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 223-247. doi: 10.4064/cm120-2-4
Cité par Sources :