Fully closed maps and non-metrizable
higher-dimensional Anderson–Choquet continua
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 201-222
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Fedorchuk's fully closed (continuous) maps and resolutions are applied in constructions of non-metrizable higher-dimensional analogues of Anderson, Choquet, and Cook's rigid continua. Certain theorems on dimension-lowering maps are proved for inductive dimensions and fully closed maps from spaces that need not be hereditarily normal, and some of the examples of continua we construct have non-coinciding dimensions.
Keywords:
fedorchuks fully closed continuous maps resolutions applied constructions non metrizable higher dimensional analogues anderson choquet cooks rigid continua certain theorems dimension lowering maps proved inductive dimensions fully closed maps spaces hereditarily normal examples continua construct have non coinciding dimensions
Affiliations des auteurs :
Jerzy Krzempek 1
@article{10_4064_cm120_2_3,
author = {Jerzy Krzempek},
title = {Fully closed maps and non-metrizable
higher-dimensional {Anderson{\textendash}Choquet} continua},
journal = {Colloquium Mathematicum},
pages = {201--222},
year = {2010},
volume = {120},
number = {2},
doi = {10.4064/cm120-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-3/}
}
TY - JOUR AU - Jerzy Krzempek TI - Fully closed maps and non-metrizable higher-dimensional Anderson–Choquet continua JO - Colloquium Mathematicum PY - 2010 SP - 201 EP - 222 VL - 120 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-3/ DO - 10.4064/cm120-2-3 LA - en ID - 10_4064_cm120_2_3 ER -
Jerzy Krzempek. Fully closed maps and non-metrizable higher-dimensional Anderson–Choquet continua. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 201-222. doi: 10.4064/cm120-2-3
Cité par Sources :