$q$-deformed circularity for an unbounded operator in Hilbert space
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 191-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The notion of strong circularity for an unbounded operator is introduced and studied. Moreover, $q$-deformed circularity as a $q$-analogue of circularity is characterized in terms of the partially isometric and the positive parts of the polar decomposition.
DOI : 10.4064/cm120-2-2
Keywords: notion strong circularity unbounded operator introduced studied moreover q deformed circularity q analogue circularity characterized terms partially isometric positive parts polar decomposition

Schôichi Ôta 1

1 Department of Content and Creative Design Kyushu University 4-9-1 Shiobaru, Fukuoka 815-8540, Japan
@article{10_4064_cm120_2_2,
     author = {Sch\^oichi \^Ota},
     title = {$q$-deformed circularity for an unbounded
 operator in {Hilbert} space},
     journal = {Colloquium Mathematicum},
     pages = {191--199},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {2010},
     doi = {10.4064/cm120-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-2/}
}
TY  - JOUR
AU  - Schôichi Ôta
TI  - $q$-deformed circularity for an unbounded
 operator in Hilbert space
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 191
EP  - 199
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-2/
DO  - 10.4064/cm120-2-2
LA  - en
ID  - 10_4064_cm120_2_2
ER  - 
%0 Journal Article
%A Schôichi Ôta
%T $q$-deformed circularity for an unbounded
 operator in Hilbert space
%J Colloquium Mathematicum
%D 2010
%P 191-199
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-2/
%R 10.4064/cm120-2-2
%G en
%F 10_4064_cm120_2_2
Schôichi Ôta. $q$-deformed circularity for an unbounded
 operator in Hilbert space. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 191-199. doi : 10.4064/cm120-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-2/

Cité par Sources :