$q$-deformed circularity for an unbounded
operator in Hilbert space
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 191-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The notion of strong circularity for an unbounded operator is introduced and studied. Moreover, $q$-deformed circularity as a $q$-analogue of circularity is characterized in terms of the partially isometric and the positive parts of the polar decomposition.
Keywords:
notion strong circularity unbounded operator introduced studied moreover q deformed circularity q analogue circularity characterized terms partially isometric positive parts polar decomposition
Affiliations des auteurs :
Schôichi Ôta 1
@article{10_4064_cm120_2_2,
author = {Sch\^oichi \^Ota},
title = {$q$-deformed circularity for an unbounded
operator in {Hilbert} space},
journal = {Colloquium Mathematicum},
pages = {191--199},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {2010},
doi = {10.4064/cm120-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-2/}
}
TY - JOUR AU - Schôichi Ôta TI - $q$-deformed circularity for an unbounded operator in Hilbert space JO - Colloquium Mathematicum PY - 2010 SP - 191 EP - 199 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-2/ DO - 10.4064/cm120-2-2 LA - en ID - 10_4064_cm120_2_2 ER -
Schôichi Ôta. $q$-deformed circularity for an unbounded operator in Hilbert space. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 191-199. doi: 10.4064/cm120-2-2
Cité par Sources :