Dynamically defined Cantor sets under the conditions of McDuff's conjecture
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 311-317.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if the Cantor set $K$, dynamically defined by a function $S\in C^{1+\alpha }$, satisfies the conditions of McDuff's conjecture then it cannot be $C^{1}$-minimal.
DOI : 10.4064/cm120-2-10
Keywords: prove cantor set dynamically defined function alpha satisfies conditions mcduffs conjecture cannot minimal

Jorge Iglesias 1 ; Aldo Portela 1

1 Instituto de Matemática Facultad de Ingeniería CC30, CP 11300 Universidad de la República Montevideo, Uruguay
@article{10_4064_cm120_2_10,
     author = {Jorge Iglesias and Aldo Portela},
     title = {Dynamically defined {Cantor} sets
 under the conditions of {McDuff's} conjecture},
     journal = {Colloquium Mathematicum},
     pages = {311--317},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {2010},
     doi = {10.4064/cm120-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-10/}
}
TY  - JOUR
AU  - Jorge Iglesias
AU  - Aldo Portela
TI  - Dynamically defined Cantor sets
 under the conditions of McDuff's conjecture
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 311
EP  - 317
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-10/
DO  - 10.4064/cm120-2-10
LA  - en
ID  - 10_4064_cm120_2_10
ER  - 
%0 Journal Article
%A Jorge Iglesias
%A Aldo Portela
%T Dynamically defined Cantor sets
 under the conditions of McDuff's conjecture
%J Colloquium Mathematicum
%D 2010
%P 311-317
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-10/
%R 10.4064/cm120-2-10
%G en
%F 10_4064_cm120_2_10
Jorge Iglesias; Aldo Portela. Dynamically defined Cantor sets
 under the conditions of McDuff's conjecture. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 311-317. doi : 10.4064/cm120-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-10/

Cité par Sources :