Dynamically defined Cantor sets
under the conditions of McDuff's conjecture
Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 311-317
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if the Cantor set $K$, dynamically defined by a function $S\in C^{1+\alpha }$, satisfies the conditions of McDuff's conjecture then it cannot be $C^{1}$-minimal.
Keywords:
prove cantor set dynamically defined function alpha satisfies conditions mcduffs conjecture cannot minimal
Affiliations des auteurs :
Jorge Iglesias 1 ; Aldo Portela 1
@article{10_4064_cm120_2_10,
author = {Jorge Iglesias and Aldo Portela},
title = {Dynamically defined {Cantor} sets
under the conditions of {McDuff's} conjecture},
journal = {Colloquium Mathematicum},
pages = {311--317},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {2010},
doi = {10.4064/cm120-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-10/}
}
TY - JOUR AU - Jorge Iglesias AU - Aldo Portela TI - Dynamically defined Cantor sets under the conditions of McDuff's conjecture JO - Colloquium Mathematicum PY - 2010 SP - 311 EP - 317 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-10/ DO - 10.4064/cm120-2-10 LA - en ID - 10_4064_cm120_2_10 ER -
%0 Journal Article %A Jorge Iglesias %A Aldo Portela %T Dynamically defined Cantor sets under the conditions of McDuff's conjecture %J Colloquium Mathematicum %D 2010 %P 311-317 %V 120 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm120-2-10/ %R 10.4064/cm120-2-10 %G en %F 10_4064_cm120_2_10
Jorge Iglesias; Aldo Portela. Dynamically defined Cantor sets under the conditions of McDuff's conjecture. Colloquium Mathematicum, Tome 120 (2010) no. 2, pp. 311-317. doi: 10.4064/cm120-2-10
Cité par Sources :