A note on the Song–Zhang theorem for Hamiltonian graphs
Colloquium Mathematicum, Tome 120 (2010) no. 1, pp. 63-75.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An independent set $S$ of a graph $G$ is said to be essential if $S$ has a pair of vertices that are distance two apart in $G$. In 1994, Song and Zhang proved that if for each independent set $S$ of cardinality $k+1$, one of the following condition holds:(i) there exist $u \neq v \in S$ such that $d(u) + d(v) \geq n$ or $|N(u) \cap N(v)| \geq \alpha (G)$; (ii) for any distinct $u$ and $v$ in $S$, $|N(u) \cup N(v)| \geq n - \max \{d(x): x \in S\}$, then $G$ is Hamiltonian. We prove that if for each essential independent set $S$ of cardinality $k+1$, one of conditions (i) or (ii) holds, then $G$ is Hamiltonian. A number of known results on Hamiltonian graphs are corollaries of this result.
DOI : 10.4064/cm120-1-5
Keywords: independent set graph said essential has pair vertices distance apart song zhang proved each independent set cardinality following condition holds there exist neq geq cap geq alpha distinct cup geq max hamiltonian prove each essential independent set cardinality conditions holds hamiltonian number known results hamiltonian graphs corollaries result

Kewen Zhao 1 ; Ronald J. Gould 2

1 Department of Mathematics Qiongzhou University Sanya, Hainan 572022 P.R. China
2 Deptartment of Mathematics and Computer Science Emory University Atlanta, GA 30322, U.S.A.
@article{10_4064_cm120_1_5,
     author = {Kewen Zhao and Ronald J. Gould},
     title = {A note on the {Song{\textendash}Zhang} theorem for {Hamiltonian} graphs},
     journal = {Colloquium Mathematicum},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {2010},
     doi = {10.4064/cm120-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-5/}
}
TY  - JOUR
AU  - Kewen Zhao
AU  - Ronald J. Gould
TI  - A note on the Song–Zhang theorem for Hamiltonian graphs
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 63
EP  - 75
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-5/
DO  - 10.4064/cm120-1-5
LA  - en
ID  - 10_4064_cm120_1_5
ER  - 
%0 Journal Article
%A Kewen Zhao
%A Ronald J. Gould
%T A note on the Song–Zhang theorem for Hamiltonian graphs
%J Colloquium Mathematicum
%D 2010
%P 63-75
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-5/
%R 10.4064/cm120-1-5
%G en
%F 10_4064_cm120_1_5
Kewen Zhao; Ronald J. Gould. A note on the Song–Zhang theorem for Hamiltonian graphs. Colloquium Mathematicum, Tome 120 (2010) no. 1, pp. 63-75. doi : 10.4064/cm120-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-5/

Cité par Sources :