Subfields of henselian valued fields
Colloquium Mathematicum, Tome 120 (2010) no. 1, pp. 157-163
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $(K,v)$ be a henselian valued field of arbitrary rank which is not separably closed. Let $k$ be a subfield of $K$ of finite codimension and $v_k$ be the valuation obtained by restricting $v$ to $k$. We give some necessary and sufficient conditions for $(k,v_k)$ to be henselian. In particular, it is shown that if $k$ is dense in its henselization, then $(k,v_k)$ is henselian. We deduce some well known results proved in this direction through other considerations.
Keywords:
henselian valued field arbitrary rank which separably closed subfield finite codimension valuation obtained restricting necessary sufficient conditions henselian particular shown dense its henselization henselian deduce known results proved direction through other considerations
Affiliations des auteurs :
Ramneek Khassa 1 ; Sudesh K. Khanduja 1
@article{10_4064_cm120_1_12,
author = {Ramneek Khassa and Sudesh K. Khanduja},
title = {Subfields of henselian valued fields},
journal = {Colloquium Mathematicum},
pages = {157--163},
publisher = {mathdoc},
volume = {120},
number = {1},
year = {2010},
doi = {10.4064/cm120-1-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-12/}
}
TY - JOUR AU - Ramneek Khassa AU - Sudesh K. Khanduja TI - Subfields of henselian valued fields JO - Colloquium Mathematicum PY - 2010 SP - 157 EP - 163 VL - 120 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-12/ DO - 10.4064/cm120-1-12 LA - en ID - 10_4064_cm120_1_12 ER -
Ramneek Khassa; Sudesh K. Khanduja. Subfields of henselian valued fields. Colloquium Mathematicum, Tome 120 (2010) no. 1, pp. 157-163. doi: 10.4064/cm120-1-12
Cité par Sources :