Monomorphisms of coalgebras
Colloquium Mathematicum, Tome 120 (2010) no. 1, pp. 149-155.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove new necessary and sufficient conditions for a morphism of coalgebras to be a monomorphism, different from the ones already available in the literature. More precisely, $\varphi: C \rightarrow D$ is a monomorphism of coalgebras if and only if the first cohomology groups of the coalgebras $C$ and $D$ coincide if and only if $\sum_{i \in I}\varepsilon(a^{i})b^{i} = \sum_{i \in I} a^{i} \varepsilon(b^{i})$ for all $\sum_{i \in I}a^{i} \otimes b^{i} \in C \mathbin\square_{D} C$. In particular, necessary and sufficient conditions for a Hopf algebra map to be a monomorphism are given.
DOI : 10.4064/cm120-1-11
Mots-clés : prove necessary sufficient conditions morphism coalgebras monomorphism different already available literature precisely varphi rightarrow monomorphism coalgebras only first cohomology groups coalgebras coincide only sum varepsilon sum varepsilon sum otimes mathbin square particular necessary sufficient conditions hopf algebra map monomorphism given

A. L. Agore 1

1 Faculty of Mathematics and Computer Science University of Bucharest Str. Academiei 14 RO-010014 Bucureşti 1, Romania and Department of Mathematics Academy of Economic Studies Piata Romana 6 RO-010374 Bucureşti 1, Romania
@article{10_4064_cm120_1_11,
     author = {A. L. Agore},
     title = {Monomorphisms of coalgebras},
     journal = {Colloquium Mathematicum},
     pages = {149--155},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {2010},
     doi = {10.4064/cm120-1-11},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-11/}
}
TY  - JOUR
AU  - A. L. Agore
TI  - Monomorphisms of coalgebras
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 149
EP  - 155
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-11/
DO  - 10.4064/cm120-1-11
LA  - de
ID  - 10_4064_cm120_1_11
ER  - 
%0 Journal Article
%A A. L. Agore
%T Monomorphisms of coalgebras
%J Colloquium Mathematicum
%D 2010
%P 149-155
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-11/
%R 10.4064/cm120-1-11
%G de
%F 10_4064_cm120_1_11
A. L. Agore. Monomorphisms of coalgebras. Colloquium Mathematicum, Tome 120 (2010) no. 1, pp. 149-155. doi : 10.4064/cm120-1-11. http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-11/

Cité par Sources :