Monomorphisms of coalgebras
Colloquium Mathematicum, Tome 120 (2010) no. 1, pp. 149-155
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove new necessary and sufficient conditions for a morphism of
coalgebras to be a monomorphism, different from the ones already
available in the literature. More precisely, $\varphi: C
\rightarrow D$ is a monomorphism of coalgebras if and only if the
first cohomology groups of the coalgebras $C$ and $D$ coincide if
and only if $\sum_{i \in I}\varepsilon(a^{i})b^{i} = \sum_{i \in
I} a^{i} \varepsilon(b^{i})$ for all $\sum_{i \in I}a^{i} \otimes
b^{i} \in C \mathbin\square_{D} C$. In particular, necessary and
sufficient conditions for a Hopf algebra map to be a monomorphism
are given.
Mots-clés :
prove necessary sufficient conditions morphism coalgebras monomorphism different already available literature precisely varphi rightarrow monomorphism coalgebras only first cohomology groups coalgebras coincide only sum varepsilon sum varepsilon sum otimes mathbin square particular necessary sufficient conditions hopf algebra map monomorphism given
Affiliations des auteurs :
A. L. Agore  1
@article{10_4064_cm120_1_11,
author = {A. L. Agore},
title = {Monomorphisms of coalgebras},
journal = {Colloquium Mathematicum},
pages = {149--155},
year = {2010},
volume = {120},
number = {1},
doi = {10.4064/cm120-1-11},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm120-1-11/}
}
A. L. Agore. Monomorphisms of coalgebras. Colloquium Mathematicum, Tome 120 (2010) no. 1, pp. 149-155. doi: 10.4064/cm120-1-11
Cité par Sources :