The size of the chain recurrent set
for generic maps
on an $n$-dimensional locally $(n-1)$-connected compact space
Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 229-236
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $n \geq 1$, given an $n$-dimensional locally $(n-1)$-connected compact
space $X$ and a finite Borel measure $\mu$ without atoms
at isolated points,
we prove that
for a generic (in the uniform metric) continuous map $f:X \to X$,
the set of points which are chain recurrent
under $f$ has $\mu$-measure zero.
The same is true for $n =0$
(skipping the local connectedness assumption).
Keywords:
geq given n dimensional locally n connected compact space finite borel measure without atoms isolated points prove generic uniform metric continuous map set points which chain recurrent under has mu measure zero skipping local connectedness assumption
Affiliations des auteurs :
Katsuya Yokoi 1
@article{10_4064_cm119_2_5,
author = {Katsuya Yokoi},
title = {The size of the chain recurrent set
for generic maps
on an $n$-dimensional locally $(n-1)$-connected compact space},
journal = {Colloquium Mathematicum},
pages = {229--236},
publisher = {mathdoc},
volume = {119},
number = {2},
year = {2010},
doi = {10.4064/cm119-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-5/}
}
TY - JOUR AU - Katsuya Yokoi TI - The size of the chain recurrent set for generic maps on an $n$-dimensional locally $(n-1)$-connected compact space JO - Colloquium Mathematicum PY - 2010 SP - 229 EP - 236 VL - 119 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-5/ DO - 10.4064/cm119-2-5 LA - en ID - 10_4064_cm119_2_5 ER -
%0 Journal Article %A Katsuya Yokoi %T The size of the chain recurrent set for generic maps on an $n$-dimensional locally $(n-1)$-connected compact space %J Colloquium Mathematicum %D 2010 %P 229-236 %V 119 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-5/ %R 10.4064/cm119-2-5 %G en %F 10_4064_cm119_2_5
Katsuya Yokoi. The size of the chain recurrent set for generic maps on an $n$-dimensional locally $(n-1)$-connected compact space. Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 229-236. doi: 10.4064/cm119-2-5
Cité par Sources :