Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
H. Ansari-Toroghy 1 ; R. Ovlyaee-Sarmazdeh 1
@article{10_4064_cm119_2_4, author = {H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh}, title = {Modules for which the natural map of the maximal spectrum is surjective}, journal = {Colloquium Mathematicum}, pages = {217--227}, publisher = {mathdoc}, volume = {119}, number = {2}, year = {2010}, doi = {10.4064/cm119-2-4}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-4/} }
TY - JOUR AU - H. Ansari-Toroghy AU - R. Ovlyaee-Sarmazdeh TI - Modules for which the natural map of the maximal spectrum is surjective JO - Colloquium Mathematicum PY - 2010 SP - 217 EP - 227 VL - 119 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-4/ DO - 10.4064/cm119-2-4 LA - en ID - 10_4064_cm119_2_4 ER -
%0 Journal Article %A H. Ansari-Toroghy %A R. Ovlyaee-Sarmazdeh %T Modules for which the natural map of the maximal spectrum is surjective %J Colloquium Mathematicum %D 2010 %P 217-227 %V 119 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-4/ %R 10.4064/cm119-2-4 %G en %F 10_4064_cm119_2_4
H. Ansari-Toroghy; R. Ovlyaee-Sarmazdeh. Modules for which the natural map of the maximal spectrum is surjective. Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 217-227. doi : 10.4064/cm119-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-4/
Cité par Sources :