Modules for which the natural map of the maximal spectrum is surjective
Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 217-227.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ be a commutative ring with identity. The purpose of this paper is to introduce two new classes of modules over $R$, called Ms modules and fulmaximal modules respectively. The first (resp. second) class contains the family of finitely generated and primeful (resp. finitely generated and multiplication) modules properly. Our concern is to extend some properties of primeful and multiplication modules to these new classes of modules.
DOI : 10.4064/cm119-2-4
Keywords: commutative ring identity purpose paper introduce classes modules called modules fulmaximal modules respectively first resp second class contains family finitely generated primeful resp finitely generated multiplication modules properly concern extend properties primeful multiplication modules these classes modules

H. Ansari-Toroghy 1 ; R. Ovlyaee-Sarmazdeh 1

1 Department of Mathematics Faculty of Science University of Guilan P.O. Box 1914 Rasht, Iran
@article{10_4064_cm119_2_4,
     author = {H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh},
     title = {Modules for which the natural map of the maximal spectrum is surjective},
     journal = {Colloquium Mathematicum},
     pages = {217--227},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {2010},
     doi = {10.4064/cm119-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-4/}
}
TY  - JOUR
AU  - H. Ansari-Toroghy
AU  - R. Ovlyaee-Sarmazdeh
TI  - Modules for which the natural map of the maximal spectrum is surjective
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 217
EP  - 227
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-4/
DO  - 10.4064/cm119-2-4
LA  - en
ID  - 10_4064_cm119_2_4
ER  - 
%0 Journal Article
%A H. Ansari-Toroghy
%A R. Ovlyaee-Sarmazdeh
%T Modules for which the natural map of the maximal spectrum is surjective
%J Colloquium Mathematicum
%D 2010
%P 217-227
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-4/
%R 10.4064/cm119-2-4
%G en
%F 10_4064_cm119_2_4
H. Ansari-Toroghy; R. Ovlyaee-Sarmazdeh. Modules for which the natural map of the maximal spectrum is surjective. Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 217-227. doi : 10.4064/cm119-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-4/

Cité par Sources :