Decompositions of cyclic elements
of locally connected continua
Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 321-330
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ denote a locally connected continuum such that cyclic elements have metrizable $G_{\delta }$ boundary in $X$. We study the cyclic elements of $X$ by demonstrating that each such continuum gives rise to an upper semicontinuous decomposition $G$ of $X$ into continua such that $X/G$ is the continuous image of an arc and the cyclic elements of $X$ correspond to the cyclic elements of $X/G$ that are Peano continua.
Keywords:
denote locally connected continuum cyclic elements have metrizable delta boundary study cyclic elements demonstrating each continuum gives rise upper semicontinuous decomposition continua continuous image arc cyclic elements correspond cyclic elements peano continua
Affiliations des auteurs :
D. Daniel 1
@article{10_4064_cm119_2_10,
author = {D. Daniel},
title = {Decompositions of cyclic elements
of locally connected continua},
journal = {Colloquium Mathematicum},
pages = {321--330},
publisher = {mathdoc},
volume = {119},
number = {2},
year = {2010},
doi = {10.4064/cm119-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-10/}
}
TY - JOUR AU - D. Daniel TI - Decompositions of cyclic elements of locally connected continua JO - Colloquium Mathematicum PY - 2010 SP - 321 EP - 330 VL - 119 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-10/ DO - 10.4064/cm119-2-10 LA - en ID - 10_4064_cm119_2_10 ER -
D. Daniel. Decompositions of cyclic elements of locally connected continua. Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 321-330. doi: 10.4064/cm119-2-10
Cité par Sources :