A Wiener type theorem for $(U(p,q) ,H_n)$
Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 169-180.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is well known that $(U( p,q) ,H_{n})$ is a generalized Gelfand pair. Applying the associated spectral analysis, we prove a theorem of Wiener Tauberian type for the reduced Heisenberg group, which generalizes a known result for the case $p=n$, $q=0$.
DOI : 10.4064/cm119-2-1
Mots-clés : known generalized gelfand pair applying associated spectral analysis prove theorem wiener tauberian type reduced heisenberg group which generalizes known result

Linda Saal 1

1 Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba and CIEM-CONICET, Ciudad Universitaria 5000 Córdoba, Argentina
@article{10_4064_cm119_2_1,
     author = {Linda Saal},
     title = {A {Wiener} type theorem for $(U(p,q) ,H_n)$},
     journal = {Colloquium Mathematicum},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {2010},
     doi = {10.4064/cm119-2-1},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-1/}
}
TY  - JOUR
AU  - Linda Saal
TI  - A Wiener type theorem for $(U(p,q) ,H_n)$
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 169
EP  - 180
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-1/
DO  - 10.4064/cm119-2-1
LA  - de
ID  - 10_4064_cm119_2_1
ER  - 
%0 Journal Article
%A Linda Saal
%T A Wiener type theorem for $(U(p,q) ,H_n)$
%J Colloquium Mathematicum
%D 2010
%P 169-180
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-1/
%R 10.4064/cm119-2-1
%G de
%F 10_4064_cm119_2_1
Linda Saal. A Wiener type theorem for $(U(p,q) ,H_n)$. Colloquium Mathematicum, Tome 119 (2010) no. 2, pp. 169-180. doi : 10.4064/cm119-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm119-2-1/

Cité par Sources :