Co-analytic, right-invertible operators are supercyclic
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 137-142.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal H$ denote a complex, infinite-dimensional, separable Hilbert space, and for any such Hilbert space $\mathcal H$, let ${\mathcal B}({\mathcal H})$ denote the algebra of bounded linear operators on $\mathcal H.$ We show that for any co-analytic, right-invertible $T$ in ${\mathcal B}({\mathcal H}),$ $\alpha T$ is hypercyclic for every complex $\alpha$ with $|\alpha|>\beta^{-1},$ where $\beta \equiv \inf_{\|x\|=1}\|T^*x\| > 0.$ In particular, every co-analytic, right-invertible $T$ in ${\mathcal B}({\mathcal H})$ is supercyclic.
DOI : 10.4064/cm119-1-9
Keywords: mathcal denote complex infinite dimensional separable hilbert space hilbert space mathcal mathcal mathcal denote algebra bounded linear operators mathcal co analytic right invertible mathcal mathcal alpha hypercyclic every complex alpha alpha beta where beta equiv inf *x particular every co analytic right invertible mathcal mathcal supercyclic

Sameer Chavan 1

1 Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Kanpur 208016, India
@article{10_4064_cm119_1_9,
     author = {Sameer Chavan},
     title = {Co-analytic, right-invertible operators are supercyclic},
     journal = {Colloquium Mathematicum},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {2010},
     doi = {10.4064/cm119-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-9/}
}
TY  - JOUR
AU  - Sameer Chavan
TI  - Co-analytic, right-invertible operators are supercyclic
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 137
EP  - 142
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-9/
DO  - 10.4064/cm119-1-9
LA  - en
ID  - 10_4064_cm119_1_9
ER  - 
%0 Journal Article
%A Sameer Chavan
%T Co-analytic, right-invertible operators are supercyclic
%J Colloquium Mathematicum
%D 2010
%P 137-142
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-9/
%R 10.4064/cm119-1-9
%G en
%F 10_4064_cm119_1_9
Sameer Chavan. Co-analytic, right-invertible operators are supercyclic. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 137-142. doi : 10.4064/cm119-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-9/

Cité par Sources :