Co-analytic, right-invertible operators are supercyclic
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 137-142
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal H$ denote a complex,
infinite-dimensional, separable Hilbert space, and for any such Hilbert space
$\mathcal H$, let ${\mathcal B}({\mathcal H})$ denote the algebra of bounded linear operators on $\mathcal H.$
We show that for any co-analytic, right-invertible $T$ in ${\mathcal
B}({\mathcal H}),$ $\alpha T$ is hypercyclic for every complex
$\alpha$ with
$|\alpha|>\beta^{-1},$ where $\beta \equiv
\inf_{\|x\|=1}\|T^*x\| > 0.$
In particular,
every co-analytic, right-invertible $T$ in ${\mathcal
B}({\mathcal H})$ is supercyclic.
Keywords:
mathcal denote complex infinite dimensional separable hilbert space hilbert space mathcal mathcal mathcal denote algebra bounded linear operators mathcal co analytic right invertible mathcal mathcal alpha hypercyclic every complex alpha alpha beta where beta equiv inf *x particular every co analytic right invertible mathcal mathcal supercyclic
Affiliations des auteurs :
Sameer Chavan  1
@article{10_4064_cm119_1_9,
author = {Sameer Chavan},
title = {Co-analytic, right-invertible operators are supercyclic},
journal = {Colloquium Mathematicum},
pages = {137--142},
year = {2010},
volume = {119},
number = {1},
doi = {10.4064/cm119-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-9/}
}
Sameer Chavan. Co-analytic, right-invertible operators are supercyclic. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 137-142. doi: 10.4064/cm119-1-9
Cité par Sources :