Separated sequences in asymptotically uniformly convex Banach spaces
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 123-125.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the unit sphere of every infinite-dimensional Banach space $X$ contains an $\alpha $-separated sequence, for every $0\alpha 1+ \overline {\delta }_X(1)$, where $\overline {\delta }_X$ denotes the modulus of asymptotic uniform convexity of $X$.
DOI : 10.4064/cm119-1-7
Keywords: prove unit sphere every infinite dimensional banach space contains alpha separated sequence every alpha overline delta where overline delta denotes modulus asymptotic uniform convexity

Sylvain Delpech 1

1 26 bis rue Xavier Privas 69008 Lyon, France
@article{10_4064_cm119_1_7,
     author = {Sylvain Delpech},
     title = {Separated sequences in asymptotically uniformly convex {Banach} spaces},
     journal = {Colloquium Mathematicum},
     pages = {123--125},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {2010},
     doi = {10.4064/cm119-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-7/}
}
TY  - JOUR
AU  - Sylvain Delpech
TI  - Separated sequences in asymptotically uniformly convex Banach spaces
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 123
EP  - 125
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-7/
DO  - 10.4064/cm119-1-7
LA  - en
ID  - 10_4064_cm119_1_7
ER  - 
%0 Journal Article
%A Sylvain Delpech
%T Separated sequences in asymptotically uniformly convex Banach spaces
%J Colloquium Mathematicum
%D 2010
%P 123-125
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-7/
%R 10.4064/cm119-1-7
%G en
%F 10_4064_cm119_1_7
Sylvain Delpech. Separated sequences in asymptotically uniformly convex Banach spaces. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 123-125. doi : 10.4064/cm119-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-7/

Cité par Sources :