Separated sequences in asymptotically uniformly convex Banach spaces
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 123-125
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the unit sphere of every infinite-dimensional Banach space $X$ contains an $\alpha $-separated sequence, for every $0\alpha 1+ \overline {\delta }_X(1)$, where $\overline {\delta }_X$ denotes the modulus of asymptotic uniform convexity of $X$.
Keywords:
prove unit sphere every infinite dimensional banach space contains alpha separated sequence every alpha overline delta where overline delta denotes modulus asymptotic uniform convexity
Affiliations des auteurs :
Sylvain Delpech 1
@article{10_4064_cm119_1_7,
author = {Sylvain Delpech},
title = {Separated sequences in asymptotically uniformly convex {Banach} spaces},
journal = {Colloquium Mathematicum},
pages = {123--125},
publisher = {mathdoc},
volume = {119},
number = {1},
year = {2010},
doi = {10.4064/cm119-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-7/}
}
TY - JOUR AU - Sylvain Delpech TI - Separated sequences in asymptotically uniformly convex Banach spaces JO - Colloquium Mathematicum PY - 2010 SP - 123 EP - 125 VL - 119 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-7/ DO - 10.4064/cm119-1-7 LA - en ID - 10_4064_cm119_1_7 ER -
Sylvain Delpech. Separated sequences in asymptotically uniformly convex Banach spaces. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 123-125. doi: 10.4064/cm119-1-7
Cité par Sources :