On Fourier asymptotics of a generalized Cantor measure
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 109-122
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $d$ be a positive integer and $\mu $ a generalized Cantor
measure satisfying $\mu=\sum_{j=1}^{m}a_{j}\mu \circ
S_{j}^{-1}$, where $0 a_{j} 1$,
$\sum_{j=1}^{m}a_{j}=1$, $S_{j}=\rho R+b_{j}$ with
$0 \rho 1$ and $R$ an orthogonal transformation of $\mathbb{R}
^{d}$. Then
$$\cases{
1 p\leq2\ \Rightarrow\cr\displaystyle\sup_{r>0}\, r^{d(
{1}/{\alpha ^{\prime }}-{1}/{{p^{\prime}}}) }
\bigg(\int_{J_{x}^{r}}\vert \widehat{\mu}( y)
\vert ^{p^{\prime}}\,dy\bigg) ^{{1}/{p^{\prime}}}\leq
D_{1} \rho ^{-{d}/{\alpha
^{\prime }}},\ x \in \mathbb{R}^{d}, \cr
p=2\ \Rightarrow\ \displaystyle\inf_{r\geq 1}\, r^{d(
{1}/{\alpha ^{\prime }}-{1}/{2}) }\bigg(
\int_{J_{0}^{r}}\vert \widehat{\mu}( y)
\vert ^{2}\,dy\bigg) ^{{1}/{2}}\geq D_{2} \rho
^{{d}/{\alpha ^{\prime }}},
}
$$
where $J_{x}^{r}= \prod_{i=1}^{d}(
x_{i}-{r}/{2},x_{i}+{r}/{2}) $, $\alpha ^{\prime
}$ is defined by $\rho ^{{d}/{\alpha ^{\prime }}}=(
\sum_{j=1}^{m} a_{j}^{p}) ^{{1}/{p}}$ and
the constants $D_{1}$ and $D_{2}$ depend only on $d$ and~$p$.
Keywords:
positive integer generalized cantor measure satisfying sum circ where sum rho rho orthogonal transformation mathbb cases leq rightarrow displaystyle sup alpha prime prime bigg int vert widehat vert prime bigg prime leq rho alpha prime mathbb rightarrow displaystyle inf geq alpha prime bigg int vert widehat vert bigg geq rho alpha prime where prod alpha prime defined rho alpha prime sum constants depend only
Affiliations des auteurs :
Bérenger Akon Kpata 1 ; Ibrahim Fofana 1 ; Konin Koua 1
@article{10_4064_cm119_1_6,
author = {B\'erenger Akon Kpata and Ibrahim Fofana and Konin Koua},
title = {On {Fourier} asymptotics of a generalized {Cantor} measure},
journal = {Colloquium Mathematicum},
pages = {109--122},
publisher = {mathdoc},
volume = {119},
number = {1},
year = {2010},
doi = {10.4064/cm119-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-6/}
}
TY - JOUR AU - Bérenger Akon Kpata AU - Ibrahim Fofana AU - Konin Koua TI - On Fourier asymptotics of a generalized Cantor measure JO - Colloquium Mathematicum PY - 2010 SP - 109 EP - 122 VL - 119 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-6/ DO - 10.4064/cm119-1-6 LA - en ID - 10_4064_cm119_1_6 ER -
%0 Journal Article %A Bérenger Akon Kpata %A Ibrahim Fofana %A Konin Koua %T On Fourier asymptotics of a generalized Cantor measure %J Colloquium Mathematicum %D 2010 %P 109-122 %V 119 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-6/ %R 10.4064/cm119-1-6 %G en %F 10_4064_cm119_1_6
Bérenger Akon Kpata; Ibrahim Fofana; Konin Koua. On Fourier asymptotics of a generalized Cantor measure. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 109-122. doi: 10.4064/cm119-1-6
Cité par Sources :