On Fourier asymptotics of a generalized Cantor measure
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 109-122.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $d$ be a positive integer and $\mu $ a generalized Cantor measure satisfying $\mu=\sum_{j=1}^{m}a_{j}\mu \circ S_{j}^{-1}$, where $0 a_{j} 1$, $\sum_{j=1}^{m}a_{j}=1$, $S_{j}=\rho R+b_{j}$ with $0 \rho 1$ and $R$ an orthogonal transformation of $\mathbb{R} ^{d}$. Then $$\cases{ 1 p\leq2\ \Rightarrow\cr\displaystyle\sup_{r>0}\, r^{d( {1}/{\alpha ^{\prime }}-{1}/{{p^{\prime}}}) } \bigg(\int_{J_{x}^{r}}\vert \widehat{\mu}( y) \vert ^{p^{\prime}}\,dy\bigg) ^{{1}/{p^{\prime}}}\leq D_{1} \rho ^{-{d}/{\alpha ^{\prime }}},\ x \in \mathbb{R}^{d}, \cr p=2\ \Rightarrow\ \displaystyle\inf_{r\geq 1}\, r^{d( {1}/{\alpha ^{\prime }}-{1}/{2}) }\bigg( \int_{J_{0}^{r}}\vert \widehat{\mu}( y) \vert ^{2}\,dy\bigg) ^{{1}/{2}}\geq D_{2} \rho ^{{d}/{\alpha ^{\prime }}}, } $$ where $J_{x}^{r}= \prod_{i=1}^{d}( x_{i}-{r}/{2},x_{i}+{r}/{2}) $, $\alpha ^{\prime }$ is defined by $\rho ^{{d}/{\alpha ^{\prime }}}=( \sum_{j=1}^{m} a_{j}^{p}) ^{{1}/{p}}$ and the constants $D_{1}$ and $D_{2}$ depend only on $d$ and~$p$.
DOI : 10.4064/cm119-1-6
Keywords: positive integer generalized cantor measure satisfying sum circ where sum rho rho orthogonal transformation mathbb cases leq rightarrow displaystyle sup alpha prime prime bigg int vert widehat vert prime bigg prime leq rho alpha prime mathbb rightarrow displaystyle inf geq alpha prime bigg int vert widehat vert bigg geq rho alpha prime where prod alpha prime defined rho alpha prime sum constants depend only

Bérenger Akon Kpata 1 ; Ibrahim Fofana 1 ; Konin Koua 1

1 UFR Mathématiques et Informatique Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire
@article{10_4064_cm119_1_6,
     author = {B\'erenger Akon Kpata and Ibrahim Fofana and Konin Koua},
     title = {On {Fourier} asymptotics of a generalized {Cantor} measure},
     journal = {Colloquium Mathematicum},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {2010},
     doi = {10.4064/cm119-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-6/}
}
TY  - JOUR
AU  - Bérenger Akon Kpata
AU  - Ibrahim Fofana
AU  - Konin Koua
TI  - On Fourier asymptotics of a generalized Cantor measure
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 109
EP  - 122
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-6/
DO  - 10.4064/cm119-1-6
LA  - en
ID  - 10_4064_cm119_1_6
ER  - 
%0 Journal Article
%A Bérenger Akon Kpata
%A Ibrahim Fofana
%A Konin Koua
%T On Fourier asymptotics of a generalized Cantor measure
%J Colloquium Mathematicum
%D 2010
%P 109-122
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-6/
%R 10.4064/cm119-1-6
%G en
%F 10_4064_cm119_1_6
Bérenger Akon Kpata; Ibrahim Fofana; Konin Koua. On Fourier asymptotics of a generalized Cantor measure. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 109-122. doi : 10.4064/cm119-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-6/

Cité par Sources :