The dimension of the derived category of
elliptic curves and
tubular weighted projective lines
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 143-156
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that the dimension of the derived category of an elliptic curve or a tubular weighted projective line is one. We give explicit generators realizing this number, and show that they are in a certain sense minimal.
Keywords:
dimension derived category elliptic curve tubular weighted projective line explicit generators realizing number certain sense minimal
Affiliations des auteurs :
Steffen Oppermann  1
@article{10_4064_cm119_1_10,
author = {Steffen Oppermann},
title = {The dimension of the derived category of
elliptic curves and
tubular weighted projective lines},
journal = {Colloquium Mathematicum},
pages = {143--156},
year = {2010},
volume = {119},
number = {1},
doi = {10.4064/cm119-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-10/}
}
TY - JOUR AU - Steffen Oppermann TI - The dimension of the derived category of elliptic curves and tubular weighted projective lines JO - Colloquium Mathematicum PY - 2010 SP - 143 EP - 156 VL - 119 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-10/ DO - 10.4064/cm119-1-10 LA - en ID - 10_4064_cm119_1_10 ER -
%0 Journal Article %A Steffen Oppermann %T The dimension of the derived category of elliptic curves and tubular weighted projective lines %J Colloquium Mathematicum %D 2010 %P 143-156 %V 119 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-10/ %R 10.4064/cm119-1-10 %G en %F 10_4064_cm119_1_10
Steffen Oppermann. The dimension of the derived category of elliptic curves and tubular weighted projective lines. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 143-156. doi: 10.4064/cm119-1-10
Cité par Sources :