The dimension of the derived category of elliptic curves and tubular weighted projective lines
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 143-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the dimension of the derived category of an elliptic curve or a tubular weighted projective line is one. We give explicit generators realizing this number, and show that they are in a certain sense minimal.
DOI : 10.4064/cm119-1-10
Keywords: dimension derived category elliptic curve tubular weighted projective line explicit generators realizing number certain sense minimal

Steffen Oppermann 1

1 Institutt for matematiske fag NTNU 7491 Trondheim, Norway
@article{10_4064_cm119_1_10,
     author = {Steffen Oppermann},
     title = {The dimension of the derived category of
 elliptic curves and
 tubular weighted projective lines},
     journal = {Colloquium Mathematicum},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {2010},
     doi = {10.4064/cm119-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-10/}
}
TY  - JOUR
AU  - Steffen Oppermann
TI  - The dimension of the derived category of
 elliptic curves and
 tubular weighted projective lines
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 143
EP  - 156
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-10/
DO  - 10.4064/cm119-1-10
LA  - en
ID  - 10_4064_cm119_1_10
ER  - 
%0 Journal Article
%A Steffen Oppermann
%T The dimension of the derived category of
 elliptic curves and
 tubular weighted projective lines
%J Colloquium Mathematicum
%D 2010
%P 143-156
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-10/
%R 10.4064/cm119-1-10
%G en
%F 10_4064_cm119_1_10
Steffen Oppermann. The dimension of the derived category of
 elliptic curves and
 tubular weighted projective lines. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 143-156. doi : 10.4064/cm119-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-10/

Cité par Sources :