Ergodic properties of a class of discrete Abelian group extensions of rank-one transformations
Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 1-22.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define a class of discrete Abelian group extensions of rank-one transformations and establish necessary and sufficient conditions for these extensions to be power weakly mixing. We show that all members of this class are multiply recurrent. We then study conditions sufficient for showing that Cartesian products of transformations are conservative for a class of invertible infinite measure-preserving transformations and provide examples of these transformations.
DOI : 10.4064/cm119-1-1
Keywords: define class discrete abelian group extensions rank one transformations establish necessary sufficient conditions these extensions power weakly mixing members class multiply recurrent study conditions sufficient showing cartesian products transformations conservative class invertible infinite measure preserving transformations provide examples these transformations

Chris Dodd 1 ; Phakawa Jeasakul 2 ; Anne Jirapattanakul 3 ; Daniel M. Kane 4 ; Becky Robinson 5 ; Noah D. Stein 6 ; Cesar E. Silva 7

1 Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A.
2 Economics Department University of California Berkeley, CA 94720, U.S.A.
3 1022 International Affairs Building Columbia University 420 West 118th Street New York, NY 10027, U.S.A.
4 Department of Mathematics Harvard University Cambridge, MA 02138, U.S.A.
5 Williams College Williamstown, MA 01267, U.S.A.
6 Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A.
7 Department of Mathematics Williams College Williamstown, MA 01267, U.S.A.
@article{10_4064_cm119_1_1,
     author = {Chris Dodd and Phakawa Jeasakul and Anne Jirapattanakul and Daniel M. Kane and Becky Robinson and Noah D. Stein and Cesar E. Silva},
     title = {Ergodic properties of a class of discrete {Abelian
} group extensions of rank-one transformations},
     journal = {Colloquium Mathematicum},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {2010},
     doi = {10.4064/cm119-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-1/}
}
TY  - JOUR
AU  - Chris Dodd
AU  - Phakawa Jeasakul
AU  - Anne Jirapattanakul
AU  - Daniel M. Kane
AU  - Becky Robinson
AU  - Noah D. Stein
AU  - Cesar E. Silva
TI  - Ergodic properties of a class of discrete Abelian
 group extensions of rank-one transformations
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 1
EP  - 22
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-1/
DO  - 10.4064/cm119-1-1
LA  - en
ID  - 10_4064_cm119_1_1
ER  - 
%0 Journal Article
%A Chris Dodd
%A Phakawa Jeasakul
%A Anne Jirapattanakul
%A Daniel M. Kane
%A Becky Robinson
%A Noah D. Stein
%A Cesar E. Silva
%T Ergodic properties of a class of discrete Abelian
 group extensions of rank-one transformations
%J Colloquium Mathematicum
%D 2010
%P 1-22
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-1/
%R 10.4064/cm119-1-1
%G en
%F 10_4064_cm119_1_1
Chris Dodd; Phakawa Jeasakul; Anne Jirapattanakul; Daniel M. Kane; Becky Robinson; Noah D. Stein; Cesar E. Silva. Ergodic properties of a class of discrete Abelian
 group extensions of rank-one transformations. Colloquium Mathematicum, Tome 119 (2010) no. 1, pp. 1-22. doi : 10.4064/cm119-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm119-1-1/

Cité par Sources :