Regular behavior at infinity of stationary measures of stochastic recursion on NA groups
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 499-523.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $N$ be a simply connected nilpotent Lie group and let $S=N\rtimes (\mathbb R ^+)^d$ be a semidirect product, $(\mathbb R ^+)^d$ acting on $N$ by diagonal automorphisms. Let $(Q_n, M_n)$ be a sequence of i.i.d. random variables with values in $S$. Under natural conditions, including contractivity in the mean, there is a unique stationary measure $\nu $ on $N$ for the Markov process $X_n=M_nX_{n-1}+Q_n$. We prove that for an appropriate homogeneous norm on $N$ there is $\chi _0$ such that $$ \lim _{t\to \infty}t^{\chi _0} \nu \{ x: |x| >t\}=C>0. $$ In particular, this applies to classical Poisson kernels on symmetric spaces, bounded homogeneous domains in $\mathbb C ^n$ or homogeneous manifolds of negative curvature.
DOI : 10.4064/cm118-2-8
Keywords: simply connected nilpotent lie group rtimes mathbb semidirect product mathbb acting diagonal automorphisms sequence random variables values nbsp under natural conditions including contractivity mean there unique stationary measure markov process n prove appropriate homogeneous norm there chi lim infty chi particular applies classical poisson kernels symmetric spaces bounded homogeneous domains mathbb homogeneous manifolds negative curvature

Dariusz Buraczewski 1 ; Ewa Damek 2

1 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
2 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wroclaw, Poland
@article{10_4064_cm118_2_8,
     author = {Dariusz Buraczewski and Ewa Damek},
     title = {Regular behavior at infinity of stationary measures
 of stochastic recursion on {NA} groups},
     journal = {Colloquium Mathematicum},
     pages = {499--523},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-8/}
}
TY  - JOUR
AU  - Dariusz Buraczewski
AU  - Ewa Damek
TI  - Regular behavior at infinity of stationary measures
 of stochastic recursion on NA groups
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 499
EP  - 523
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-8/
DO  - 10.4064/cm118-2-8
LA  - en
ID  - 10_4064_cm118_2_8
ER  - 
%0 Journal Article
%A Dariusz Buraczewski
%A Ewa Damek
%T Regular behavior at infinity of stationary measures
 of stochastic recursion on NA groups
%J Colloquium Mathematicum
%D 2010
%P 499-523
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-8/
%R 10.4064/cm118-2-8
%G en
%F 10_4064_cm118_2_8
Dariusz Buraczewski; Ewa Damek. Regular behavior at infinity of stationary measures
 of stochastic recursion on NA groups. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 499-523. doi : 10.4064/cm118-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-8/

Cité par Sources :