Local admissible convergence of harmonic functions on non-homogeneous trees
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 419-444.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove admissible convergence to the boundary of functions that are harmonic on a subset of a non-homogeneous tree equipped with a transition operator that satisfies uniform bounds suitable for transience. The approach is based on a discrete Green formula, suitable estimates for the Green and Poisson kernel and an analogue of the Lusin area function.
DOI : 10.4064/cm118-2-5
Keywords: prove admissible convergence boundary functions harmonic subset non homogeneous tree equipped transition operator satisfies uniform bounds suitable transience approach based discrete green formula suitable estimates green poisson kernel analogue lusin area function

Massimo A. Picardello 1

1 Dipartimento di Matematica Università di Roma “Tor Vergata” Via della Ricerca Scientifica 00133 Roma, Italy
@article{10_4064_cm118_2_5,
     author = {Massimo A. Picardello},
     title = {Local admissible convergence of harmonic functions on non-homogeneous trees},
     journal = {Colloquium Mathematicum},
     pages = {419--444},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-5/}
}
TY  - JOUR
AU  - Massimo A. Picardello
TI  - Local admissible convergence of harmonic functions on non-homogeneous trees
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 419
EP  - 444
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-5/
DO  - 10.4064/cm118-2-5
LA  - en
ID  - 10_4064_cm118_2_5
ER  - 
%0 Journal Article
%A Massimo A. Picardello
%T Local admissible convergence of harmonic functions on non-homogeneous trees
%J Colloquium Mathematicum
%D 2010
%P 419-444
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-5/
%R 10.4064/cm118-2-5
%G en
%F 10_4064_cm118_2_5
Massimo A. Picardello. Local admissible convergence of harmonic functions on non-homogeneous trees. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 419-444. doi : 10.4064/cm118-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-5/

Cité par Sources :