Local admissible convergence of harmonic functions on non-homogeneous trees
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 419-444
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove admissible convergence to the boundary of functions that are harmonic on a subset of a non-homogeneous tree equipped with a transition operator that satisfies uniform bounds suitable for transience. The approach is based on a discrete Green formula, suitable estimates for the Green and Poisson kernel and an analogue of the Lusin area function.
Keywords:
prove admissible convergence boundary functions harmonic subset non homogeneous tree equipped transition operator satisfies uniform bounds suitable transience approach based discrete green formula suitable estimates green poisson kernel analogue lusin area function
Affiliations des auteurs :
Massimo A. Picardello  1
@article{10_4064_cm118_2_5,
author = {Massimo A. Picardello},
title = {Local admissible convergence of harmonic functions on non-homogeneous trees},
journal = {Colloquium Mathematicum},
pages = {419--444},
year = {2010},
volume = {118},
number = {2},
doi = {10.4064/cm118-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-5/}
}
TY - JOUR AU - Massimo A. Picardello TI - Local admissible convergence of harmonic functions on non-homogeneous trees JO - Colloquium Mathematicum PY - 2010 SP - 419 EP - 444 VL - 118 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-5/ DO - 10.4064/cm118-2-5 LA - en ID - 10_4064_cm118_2_5 ER -
Massimo A. Picardello. Local admissible convergence of harmonic functions on non-homogeneous trees. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 419-444. doi: 10.4064/cm118-2-5
Cité par Sources :