Pointwise limits for sequences of orbital integrals
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 401-418.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group $G$ on $(G,\rho )$, where $\rho $ is the right Haar measure. We study the same kind of problem, but more generally for left actions of $G$ on any measure space $(X,\mu )$, which leave the $\sigma $-finite measure $\mu $ relatively invariant, in the sense that $s\mu = {\mit\Delta} (s)\mu $ for every $s\in G$, where ${\mit\Delta} $ is the modular function of $G$. As a consequence, we also obtain a generalization of a theorem of Civin on one-parameter groups of measure preserving transformations. The original motivation for the circle of questions treated here dates back to classical problems concerning pointwise convergence of Riemann sums of Lebesgue integrable functions.
DOI : 10.4064/cm118-2-4
Keywords: ross stromberg published theorem about pointwise limits orbital integrals action locally compact group rho where rho right haar measure study kind problem generally actions measure space which leave sigma finite measure relatively invariant sense mit delta every where mit delta modular function consequence obtain generalization theorem civin one parameter groups measure preserving transformations original motivation circle questions treated here dates back classical problems concerning pointwise convergence riemann sums lebesgue integrable functions

Claire Anantharaman-Delaroche 1

1 Laboratoire de Mathématiques et Applications Physique Mathématique d'Orléans (MAPMO - UMR6628) Fédération Denis Poisson (FDP - FR2964) CNRS/Université d'Orléans B.P. 6759, F-45067 Orléans Cedex 2, France
@article{10_4064_cm118_2_4,
     author = {Claire Anantharaman-Delaroche},
     title = {Pointwise limits for sequences of orbital integrals},
     journal = {Colloquium Mathematicum},
     pages = {401--418},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-4/}
}
TY  - JOUR
AU  - Claire Anantharaman-Delaroche
TI  - Pointwise limits for sequences of orbital integrals
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 401
EP  - 418
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-4/
DO  - 10.4064/cm118-2-4
LA  - en
ID  - 10_4064_cm118_2_4
ER  - 
%0 Journal Article
%A Claire Anantharaman-Delaroche
%T Pointwise limits for sequences of orbital integrals
%J Colloquium Mathematicum
%D 2010
%P 401-418
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-4/
%R 10.4064/cm118-2-4
%G en
%F 10_4064_cm118_2_4
Claire Anantharaman-Delaroche. Pointwise limits for sequences of orbital integrals. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 401-418. doi : 10.4064/cm118-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-4/

Cité par Sources :