Convergence to stable laws and a local limit theorem for stochastic recursions
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 705-720.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the random recursion $X_{n}^{x}=M_nX_{n-1}^{x}+Q_n+N_n(X_{n-1}^{x})$, where $x\in\mathbb R$ and $(M_n, Q_n, N_n)$ are i.i.d., $Q_n$ has a heavy tail with exponent $\alpha>0$, the tail of $M_n$ is lighter and $N_n(X_{n-1}^{x})$ is smaller at infinity, than $M_nX_{n-1}^{x}$. Using the asymptotics of the stationary solutions we show that properly normalized Birkhoff sums $S_n^x=\sum_{k=0}^n X_k^x$ converge weakly to an $\alpha$-stable law for $\alpha\in(0, 2]$. The related local limit theorem is also proved.
DOI : 10.4064/cm118-2-21
Keywords: consider random recursion n n n where mathbb has heavy tail exponent alpha tail lighter n smaller infinity n using asymptotics stationary solutions properly normalized birkhoff sums sum x converge weakly alpha stable law alpha related local limit theorem proved

Mariusz Mirek 1

1 Institute of Mathematics University of Wrocław Plac Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm118_2_21,
     author = {Mariusz Mirek},
     title = {Convergence to stable laws and a local limit
theorem for stochastic recursions},
     journal = {Colloquium Mathematicum},
     pages = {705--720},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-21/}
}
TY  - JOUR
AU  - Mariusz Mirek
TI  - Convergence to stable laws and a local limit
theorem for stochastic recursions
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 705
EP  - 720
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-21/
DO  - 10.4064/cm118-2-21
LA  - en
ID  - 10_4064_cm118_2_21
ER  - 
%0 Journal Article
%A Mariusz Mirek
%T Convergence to stable laws and a local limit
theorem for stochastic recursions
%J Colloquium Mathematicum
%D 2010
%P 705-720
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-21/
%R 10.4064/cm118-2-21
%G en
%F 10_4064_cm118_2_21
Mariusz Mirek. Convergence to stable laws and a local limit
theorem for stochastic recursions. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 705-720. doi : 10.4064/cm118-2-21. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-21/

Cité par Sources :