Convergence to stable laws and a local limit
theorem for stochastic recursions
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 705-720
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the random recursion
$X_{n}^{x}=M_nX_{n-1}^{x}+Q_n+N_n(X_{n-1}^{x})$, where $x\in\mathbb R$
and $(M_n, Q_n, N_n)$ are i.i.d., $Q_n$ has a heavy tail with
exponent $\alpha>0$, the tail of $M_n$ is lighter and
$N_n(X_{n-1}^{x})$ is smaller at infinity, than $M_nX_{n-1}^{x}$.
Using the asymptotics of the stationary solutions we show that
properly normalized Birkhoff sums $S_n^x=\sum_{k=0}^n X_k^x$
converge weakly to an $\alpha$-stable law for $\alpha\in(0, 2]$. The
related local limit theorem is also proved.
Keywords:
consider random recursion n n n where mathbb has heavy tail exponent alpha tail lighter n smaller infinity n using asymptotics stationary solutions properly normalized birkhoff sums sum x converge weakly alpha stable law alpha related local limit theorem proved
Affiliations des auteurs :
Mariusz Mirek  1
@article{10_4064_cm118_2_21,
author = {Mariusz Mirek},
title = {Convergence to stable laws and a local limit
theorem for stochastic recursions},
journal = {Colloquium Mathematicum},
pages = {705--720},
year = {2010},
volume = {118},
number = {2},
doi = {10.4064/cm118-2-21},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-21/}
}
TY - JOUR AU - Mariusz Mirek TI - Convergence to stable laws and a local limit theorem for stochastic recursions JO - Colloquium Mathematicum PY - 2010 SP - 705 EP - 720 VL - 118 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-21/ DO - 10.4064/cm118-2-21 LA - en ID - 10_4064_cm118_2_21 ER -
Mariusz Mirek. Convergence to stable laws and a local limit theorem for stochastic recursions. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 705-720. doi: 10.4064/cm118-2-21
Cité par Sources :