Eigenfunctions of the Hardy–Littlewood maximal operator
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 379-389.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy–Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on $L(p)$ spaces are not attained.
DOI : 10.4064/cm118-2-2
Keywords: prove peak shaped eigenfunctions one dimensional uncentered hardy littlewood maximal operator symmetric homogeneous implies norms maximal operator spaces attained

Leonardo Colzani 1 ; Javier Pérez Lázaro 2

1 Dipartimento di Matematica Università di Milano - Bicocca 20125 Milano, Italy
2 Departamento de Matemáticas y Computación Universidad de La Rioja 26004 Logroño, La Rioja, Spain
@article{10_4064_cm118_2_2,
     author = {Leonardo Colzani and Javier P\'erez L\'azaro},
     title = {Eigenfunctions of the {Hardy{\textendash}Littlewood
} maximal operator},
     journal = {Colloquium Mathematicum},
     pages = {379--389},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-2/}
}
TY  - JOUR
AU  - Leonardo Colzani
AU  - Javier Pérez Lázaro
TI  - Eigenfunctions of the Hardy–Littlewood
 maximal operator
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 379
EP  - 389
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-2/
DO  - 10.4064/cm118-2-2
LA  - en
ID  - 10_4064_cm118_2_2
ER  - 
%0 Journal Article
%A Leonardo Colzani
%A Javier Pérez Lázaro
%T Eigenfunctions of the Hardy–Littlewood
 maximal operator
%J Colloquium Mathematicum
%D 2010
%P 379-389
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-2/
%R 10.4064/cm118-2-2
%G en
%F 10_4064_cm118_2_2
Leonardo Colzani; Javier Pérez Lázaro. Eigenfunctions of the Hardy–Littlewood
 maximal operator. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 379-389. doi : 10.4064/cm118-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-2/

Cité par Sources :