Riesz transforms for the Dunkl Ornstein–Uhlenbeck
operator
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 669-684
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We propose a definition of Riesz transforms associated to
the Ornstein–Uhlenbeck operator based on the Dunkl Laplacian.
In the case related to the group $\mathbb{Z}_2$ it is proved that the Riesz
transform is bounded on the corresponding $L^p$ spaces, $1 p \infty$.
Mots-clés :
propose definition riesz transforms associated ornstein uhlenbeck operator based dunkl laplacian related group mathbb proved riesz transform bounded corresponding spaces infty
Affiliations des auteurs :
Adam Nowak 1 ; Luz Roncal 2 ; Krzysztof Stempak 3
@article{10_4064_cm118_2_19,
author = {Adam Nowak and Luz Roncal and Krzysztof Stempak},
title = {Riesz transforms for the {Dunkl} {Ornstein{\textendash}Uhlenbeck
} operator},
journal = {Colloquium Mathematicum},
pages = {669--684},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {2010},
doi = {10.4064/cm118-2-19},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-19/}
}
TY - JOUR AU - Adam Nowak AU - Luz Roncal AU - Krzysztof Stempak TI - Riesz transforms for the Dunkl Ornstein–Uhlenbeck operator JO - Colloquium Mathematicum PY - 2010 SP - 669 EP - 684 VL - 118 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-19/ DO - 10.4064/cm118-2-19 LA - de ID - 10_4064_cm118_2_19 ER -
%0 Journal Article %A Adam Nowak %A Luz Roncal %A Krzysztof Stempak %T Riesz transforms for the Dunkl Ornstein–Uhlenbeck operator %J Colloquium Mathematicum %D 2010 %P 669-684 %V 118 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-19/ %R 10.4064/cm118-2-19 %G de %F 10_4064_cm118_2_19
Adam Nowak; Luz Roncal; Krzysztof Stempak. Riesz transforms for the Dunkl Ornstein–Uhlenbeck operator. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 669-684. doi: 10.4064/cm118-2-19
Cité par Sources :