Boundary behaviour of holomorphic functions in Hardy–Sobolev spaces on convex domains in $\mathbb{C}^n$
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 649-668.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the boundary behaviour of holomorphic functions in the Hardy–Sobolev spaces ${\cal H}^{p,k}({\cal D})$, where $\cal D$ is a smooth, bounded convex domain of finite type in $\mathbb C^n$, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel–Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.
DOI : 10.4064/cm118-2-18
Keywords: study boundary behaviour holomorphic functions hardy sobolev spaces cal cal where cal smooth bounded convex domain finite type nbsp mathbb describing approach regions functions particular extend nbsp phenomenon first discovered nagel rudin shapiro the unit disk later extended sueiro strongly pseudoconvex domains

Marco M. Peloso 1 ; Hercule Valencourt 1

1 Dipartimento di Matematica Università degli Studi di Milano Via C. Saldini 50, 20133 Milano, Italy
@article{10_4064_cm118_2_18,
     author = {Marco M. Peloso and Hercule Valencourt},
     title = {Boundary behaviour of holomorphic functions in {Hardy{\textendash}Sobolev
spaces} on convex domains in $\mathbb{C}^n$},
     journal = {Colloquium Mathematicum},
     pages = {649--668},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-18/}
}
TY  - JOUR
AU  - Marco M. Peloso
AU  - Hercule Valencourt
TI  - Boundary behaviour of holomorphic functions in Hardy–Sobolev
spaces on convex domains in $\mathbb{C}^n$
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 649
EP  - 668
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-18/
DO  - 10.4064/cm118-2-18
LA  - en
ID  - 10_4064_cm118_2_18
ER  - 
%0 Journal Article
%A Marco M. Peloso
%A Hercule Valencourt
%T Boundary behaviour of holomorphic functions in Hardy–Sobolev
spaces on convex domains in $\mathbb{C}^n$
%J Colloquium Mathematicum
%D 2010
%P 649-668
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-18/
%R 10.4064/cm118-2-18
%G en
%F 10_4064_cm118_2_18
Marco M. Peloso; Hercule Valencourt. Boundary behaviour of holomorphic functions in Hardy–Sobolev
spaces on convex domains in $\mathbb{C}^n$. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 649-668. doi : 10.4064/cm118-2-18. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-18/

Cité par Sources :