Dynamics and Lieb–Robinson estimates for lattices of interacting anharmonic oscillators
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 609-648.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a class of infinite lattices of interacting anharmonic oscillators, we study the existence of the dynamics, together with Lieb–Robinson bounds, in a suitable algebra of observables.
DOI : 10.4064/cm118-2-17
Keywords: class infinite lattices interacting anharmonic oscillators study existence dynamics together lieb robinson bounds suitable algebra observables

L. Amour 1 ; P. Lévy-Bruhl 1 ; J. Nourrigat 1

1 Département de Mathématiques Unité CNRS FRE 3111 Université de Reims BP 1039 51687 Reims Cedex 2, France
@article{10_4064_cm118_2_17,
     author = {L. Amour and P. L\'evy-Bruhl and J. Nourrigat},
     title = {Dynamics and {Lieb{\textendash}Robinson} estimates for lattices of interacting anharmonic oscillators},
     journal = {Colloquium Mathematicum},
     pages = {609--648},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-17/}
}
TY  - JOUR
AU  - L. Amour
AU  - P. Lévy-Bruhl
AU  - J. Nourrigat
TI  - Dynamics and Lieb–Robinson estimates for lattices of interacting anharmonic oscillators
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 609
EP  - 648
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-17/
DO  - 10.4064/cm118-2-17
LA  - en
ID  - 10_4064_cm118_2_17
ER  - 
%0 Journal Article
%A L. Amour
%A P. Lévy-Bruhl
%A J. Nourrigat
%T Dynamics and Lieb–Robinson estimates for lattices of interacting anharmonic oscillators
%J Colloquium Mathematicum
%D 2010
%P 609-648
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-17/
%R 10.4064/cm118-2-17
%G en
%F 10_4064_cm118_2_17
L. Amour; P. Lévy-Bruhl; J. Nourrigat. Dynamics and Lieb–Robinson estimates for lattices of interacting anharmonic oscillators. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 609-648. doi : 10.4064/cm118-2-17. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-17/

Cité par Sources :