A note on integer translates of a square integrable function on $\mathbb R$
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 593-597.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the subspace of $L^2({\mathbb R})$ spanned by the integer shifts of one function $\psi$, and formulate a condition on the family $\{\psi(\cdot-n)\}_{n=-\infty}^\infty$, which is equivalent to the weight function $\sum_{n=-\infty}^\infty|\hat{\psi}(\cdot+n)|^{2}$ being $>0$ a.e.
DOI : 10.4064/cm118-2-15
Keywords: consider subspace mathbb spanned integer shifts function nbsp psi formulate condition family psi cdot n infty infty which equivalent weight function sum infty infty hat psi cdot being nbsp

Maciej Paluszyński 1

1 Instytut Matematyczny Uniwersytet Wrocławski Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm118_2_15,
     author = {Maciej Paluszy\'nski},
     title = {A note on integer translates of a square integrable function on $\mathbb R$},
     journal = {Colloquium Mathematicum},
     pages = {593--597},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-15/}
}
TY  - JOUR
AU  - Maciej Paluszyński
TI  - A note on integer translates of a square integrable function on $\mathbb R$
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 593
EP  - 597
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-15/
DO  - 10.4064/cm118-2-15
LA  - en
ID  - 10_4064_cm118_2_15
ER  - 
%0 Journal Article
%A Maciej Paluszyński
%T A note on integer translates of a square integrable function on $\mathbb R$
%J Colloquium Mathematicum
%D 2010
%P 593-597
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-15/
%R 10.4064/cm118-2-15
%G en
%F 10_4064_cm118_2_15
Maciej Paluszyński. A note on integer translates of a square integrable function on $\mathbb R$. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 593-597. doi : 10.4064/cm118-2-15. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-15/

Cité par Sources :