Composition and $L^2$-boundedness of flag kernels
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 581-585
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the composition and $L^2$-boundedness theorems for the Nagel–Ricci–Stein flag kernels related to the natural gradation of homogeneous groups.
Keywords:
prove composition boundedness theorems nagel ricci stein flag kernels related natural gradation homogeneous groups
Affiliations des auteurs :
Paweł Głowacki 1
@article{10_4064_cm118_2_13,
author = {Pawe{\l} G{\l}owacki},
title = {Composition and $L^2$-boundedness of flag kernels},
journal = {Colloquium Mathematicum},
pages = {581--585},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {2010},
doi = {10.4064/cm118-2-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-13/}
}
Paweł Głowacki. Composition and $L^2$-boundedness of flag kernels. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 581-585. doi: 10.4064/cm118-2-13
Cité par Sources :