Composition and $L^2$-boundedness of flag kernels
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 581-585.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the composition and $L^2$-boundedness theorems for the Nagel–Ricci–Stein flag kernels related to the natural gradation of homogeneous groups.
DOI : 10.4064/cm118-2-13
Keywords: prove composition boundedness theorems nagel ricci stein flag kernels related natural gradation homogeneous groups

Paweł Głowacki 1

1 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm118_2_13,
     author = {Pawe{\l}  G{\l}owacki},
     title = {Composition and $L^2$-boundedness of flag kernels},
     journal = {Colloquium Mathematicum},
     pages = {581--585},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-13/}
}
TY  - JOUR
AU  - Paweł  Głowacki
TI  - Composition and $L^2$-boundedness of flag kernels
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 581
EP  - 585
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-13/
DO  - 10.4064/cm118-2-13
LA  - en
ID  - 10_4064_cm118_2_13
ER  - 
%0 Journal Article
%A Paweł  Głowacki
%T Composition and $L^2$-boundedness of flag kernels
%J Colloquium Mathematicum
%D 2010
%P 581-585
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-13/
%R 10.4064/cm118-2-13
%G en
%F 10_4064_cm118_2_13
Paweł  Głowacki. Composition and $L^2$-boundedness of flag kernels. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 581-585. doi : 10.4064/cm118-2-13. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-13/

Cité par Sources :