Möbius invariance of analytic Besov spaces
in tube domains over symmetric cones
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 559-568
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Besov spaces of holomorphic functions in tubes over cones have been recently defined by Békollé et al. In this paper we show that Besov $p$-seminorms are invariant under conformal transformations of the domain when $n/r$ is an integer, at least in the range $2-r/n p\leq \infty $.
Mots-clés :
besov spaces holomorphic functions tubes cones have recently defined koll paper besov p seminorms invariant under conformal transformations domain integer least range r leq infty
Affiliations des auteurs :
G. Garrigós 1
@article{10_4064_cm118_2_11,
author = {G. Garrig\'os},
title = {M\"obius invariance of analytic {Besov} spaces
in tube domains over symmetric cones},
journal = {Colloquium Mathematicum},
pages = {559--568},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {2010},
doi = {10.4064/cm118-2-11},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-11/}
}
TY - JOUR AU - G. Garrigós TI - Möbius invariance of analytic Besov spaces in tube domains over symmetric cones JO - Colloquium Mathematicum PY - 2010 SP - 559 EP - 568 VL - 118 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-11/ DO - 10.4064/cm118-2-11 LA - fr ID - 10_4064_cm118_2_11 ER -
G. Garrigós. Möbius invariance of analytic Besov spaces in tube domains over symmetric cones. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 559-568. doi: 10.4064/cm118-2-11
Cité par Sources :