Möbius invariance of analytic Besov spaces in tube domains over symmetric cones
Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 559-568.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Besov spaces of holomorphic functions in tubes over cones have been recently defined by Békollé et al. In this paper we show that Besov $p$-seminorms are invariant under conformal transformations of the domain when $n/r$ is an integer, at least in the range $2-r/n p\leq \infty $.
DOI : 10.4064/cm118-2-11
Mots-clés : besov spaces holomorphic functions tubes cones have recently defined koll paper besov p seminorms invariant under conformal transformations domain integer least range r leq infty

G. Garrigós 1

1 Departamento de Matemáticas C-XV Universidad Autónoma de Madrid 28049 Madrid, Spain
@article{10_4064_cm118_2_11,
     author = {G. Garrig\'os},
     title = {M\"obius invariance of analytic {Besov} spaces
 in tube domains over symmetric cones},
     journal = {Colloquium Mathematicum},
     pages = {559--568},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {2010},
     doi = {10.4064/cm118-2-11},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-11/}
}
TY  - JOUR
AU  - G. Garrigós
TI  - Möbius invariance of analytic Besov spaces
 in tube domains over symmetric cones
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 559
EP  - 568
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-11/
DO  - 10.4064/cm118-2-11
LA  - fr
ID  - 10_4064_cm118_2_11
ER  - 
%0 Journal Article
%A G. Garrigós
%T Möbius invariance of analytic Besov spaces
 in tube domains over symmetric cones
%J Colloquium Mathematicum
%D 2010
%P 559-568
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-11/
%R 10.4064/cm118-2-11
%G fr
%F 10_4064_cm118_2_11
G. Garrigós. Möbius invariance of analytic Besov spaces
 in tube domains over symmetric cones. Colloquium Mathematicum, Tome 118 (2010) no. 2, pp. 559-568. doi : 10.4064/cm118-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm118-2-11/

Cité par Sources :