Hankel operators and weak factorization for Hardy–Orlicz spaces
Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 107-132.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the holomorphic Hardy–Orlicz spaces ${\cal H}^{\Phi}(\Omega)$, where $\Omega$ is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in ${\mathbb C}^n$. The function $\Phi$ is in particular such that ${\cal H}^{1}(\Omega)\subset {\cal H}^{\Phi}(\Omega)\subset {\cal H}^{p}(\Omega)$ for some $p>0$. We develop maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space ${\it BMOA}(\Omega)$. As a consequence, we characterize those Hankel operators which are bounded from $\mathcal H^\Phi(\Omega)$ into $\mathcal H^1(\Omega)$.
DOI : 10.4064/cm118-1-5
Keywords: study holomorphic hardy orlicz spaces cal phi omega where omega unit ball generally convex domain finite type strictly pseudoconvex domain mathbb function phi particular cal omega subset cal phi omega subset cal omega develop maximal characterizations atomic molecular decompositions prove weak factorization theorems involving space bmoa omega consequence characterize those hankel operators which bounded mathcal phi omega mathcal omega

Aline Bonami 1 ; Sandrine Grellier 1

1 Fédération Denis Poisson (MAPMO-UMR 6628) Département de Mathématiques Université d'Orléans 45067 Orléans Cedex 2, France
@article{10_4064_cm118_1_5,
     author = {Aline Bonami and Sandrine Grellier},
     title = {Hankel operators and weak factorization
for {Hardy{\textendash}Orlicz} spaces},
     journal = {Colloquium Mathematicum},
     pages = {107--132},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {2010},
     doi = {10.4064/cm118-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-5/}
}
TY  - JOUR
AU  - Aline Bonami
AU  - Sandrine Grellier
TI  - Hankel operators and weak factorization
for Hardy–Orlicz spaces
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 107
EP  - 132
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-5/
DO  - 10.4064/cm118-1-5
LA  - en
ID  - 10_4064_cm118_1_5
ER  - 
%0 Journal Article
%A Aline Bonami
%A Sandrine Grellier
%T Hankel operators and weak factorization
for Hardy–Orlicz spaces
%J Colloquium Mathematicum
%D 2010
%P 107-132
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-5/
%R 10.4064/cm118-1-5
%G en
%F 10_4064_cm118_1_5
Aline Bonami; Sandrine Grellier. Hankel operators and weak factorization
for Hardy–Orlicz spaces. Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 107-132. doi : 10.4064/cm118-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-5/

Cité par Sources :