Spherical harmonics on Grassmannians
Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 349-364
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We propose a generalization of the theory of spherical
harmonics to the context of symmetric subgroups of reductive
groups acting on flag manifolds.
We give some sample results for the case of the orthogonal group
acting on Grassmann manifolds, especially the case of 2-planes.
Keywords:
propose generalization theory spherical harmonics context symmetric subgroups reductive groups acting flag manifolds sample results the orthogonal group acting grassmann manifolds especially planes
Affiliations des auteurs :
Roger Howe 1 ; Soo Teck Lee 2
@article{10_4064_cm118_1_19,
author = {Roger Howe and Soo Teck Lee},
title = {Spherical harmonics on {Grassmannians}},
journal = {Colloquium Mathematicum},
pages = {349--364},
publisher = {mathdoc},
volume = {118},
number = {1},
year = {2010},
doi = {10.4064/cm118-1-19},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-19/}
}
Roger Howe; Soo Teck Lee. Spherical harmonics on Grassmannians. Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 349-364. doi: 10.4064/cm118-1-19
Cité par Sources :