Spherical harmonics on Grassmannians
Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 349-364.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We propose a generalization of the theory of spherical harmonics to the context of symmetric subgroups of reductive groups acting on flag manifolds. We give some sample results for the case of the orthogonal group acting on Grassmann manifolds, especially the case of 2-planes.
DOI : 10.4064/cm118-1-19
Keywords: propose generalization theory spherical harmonics context symmetric subgroups reductive groups acting flag manifolds sample results the orthogonal group acting grassmann manifolds especially planes

Roger Howe 1 ; Soo Teck Lee 2

1 Department of Mathematics Yale University New Haven, CT 06520-8283, U.S.A.
2 Department of Mathematics National University of Singapore 10, Lower Kent Ridge Road Singapore 119076
@article{10_4064_cm118_1_19,
     author = {Roger Howe and Soo Teck Lee},
     title = {Spherical harmonics on {Grassmannians}},
     journal = {Colloquium Mathematicum},
     pages = {349--364},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {2010},
     doi = {10.4064/cm118-1-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-19/}
}
TY  - JOUR
AU  - Roger Howe
AU  - Soo Teck Lee
TI  - Spherical harmonics on Grassmannians
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 349
EP  - 364
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-19/
DO  - 10.4064/cm118-1-19
LA  - en
ID  - 10_4064_cm118_1_19
ER  - 
%0 Journal Article
%A Roger Howe
%A Soo Teck Lee
%T Spherical harmonics on Grassmannians
%J Colloquium Mathematicum
%D 2010
%P 349-364
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-19/
%R 10.4064/cm118-1-19
%G en
%F 10_4064_cm118_1_19
Roger Howe; Soo Teck Lee. Spherical harmonics on Grassmannians. Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 349-364. doi : 10.4064/cm118-1-19. http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-19/

Cité par Sources :