A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups
Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 333-347.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define partial spectral integrals $S_R$ on the Heisenberg group by means of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets $V$ containing the joint spectrum of the partial sub-Laplacians and the central derivative. Under the assumption that an $L^2$-function $f$ lies in the logarithmic Sobolev space given by $\log(2+L_\alpha)f\in L^2,$ where $L_\alpha$ is a suitable “generalized” sub-Laplacian associated to the dilation structure, we show that $S_Rf(x)$ converges a.e. to $f(x)$ as $R\to\infty.$
DOI : 10.4064/cm118-1-18
Keywords: define partial spectral integrals heisenberg group means localizations isotropic anisotropic dilates suitable star shaped subsets containing joint spectrum partial sub laplacians central derivative under assumption function lies logarithmic sobolev space given log alpha where alpha suitable generalized sub laplacian associated dilation structure converges infty

D. Müller 1 ; E. Prestini 2

1 Mathematisches Seminar C.A.-Universität Kiel Ludewig-Meyn-Str. 4 D-24098 Kiel, Germany
2 Dipartimento di Matematica Università di Roma “Tor Vergata” Via della Ricerca Scientifica 00133 Roma, Italy
@article{10_4064_cm118_1_18,
     author = {D. M\"uller and E. Prestini},
     title = {A.e. convergence of anisotropic partial {Fourier} integrals {on
Euclidean} spaces and {Heisenberg} groups},
     journal = {Colloquium Mathematicum},
     pages = {333--347},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {2010},
     doi = {10.4064/cm118-1-18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-18/}
}
TY  - JOUR
AU  - D. Müller
AU  - E. Prestini
TI  - A.e. convergence of anisotropic partial Fourier integrals on
Euclidean spaces and Heisenberg groups
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 333
EP  - 347
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-18/
DO  - 10.4064/cm118-1-18
LA  - en
ID  - 10_4064_cm118_1_18
ER  - 
%0 Journal Article
%A D. Müller
%A E. Prestini
%T A.e. convergence of anisotropic partial Fourier integrals on
Euclidean spaces and Heisenberg groups
%J Colloquium Mathematicum
%D 2010
%P 333-347
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-18/
%R 10.4064/cm118-1-18
%G en
%F 10_4064_cm118_1_18
D. Müller; E. Prestini. A.e. convergence of anisotropic partial Fourier integrals on
Euclidean spaces and Heisenberg groups. Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 333-347. doi : 10.4064/cm118-1-18. http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-18/

Cité par Sources :