Asymptotic spherical analysis on the Heisenberg group
Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 233-258
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The asymptotics of spherical functions for large
dimensions are related to spherical functions
for Olshanski spherical pairs. In this paper we consider
inductive limits of Gelfand pairs
associated to the Heisenberg group. The group $K=U(n)\times U(p)$ acts multiplicity free on ${\cal P}(V)$, the space of polynomials on $V=M(n,p;{\mathbb C})$,
the space of $n\times p$ complex matrices. The group $K$ acts also on the Heisenberg group $H=V\times {\mathbb R}$. By a result of Carcano, the pair $(G,K)$
with $G=K\ltimes H$ is a Gelfand pair.
The main results of the paper are
the asymptotics of the spherical functions related to the pair $(G,K)$ for
large $n$ and $p$. This analysis involves
the asymptotics of shifted Schur functions.
Keywords:
asymptotics spherical functions large dimensions related spherical functions olshanski spherical pairs paper consider inductive limits gelfand pairs associated heisenberg group group times acts multiplicity cal space polynomials p mathbb space times complex matrices group acts heisenberg group times mathbb result carcano pair ltimes gelfand pair main results paper asymptotics spherical functions related pair large analysis involves asymptotics shifted schur functions
Affiliations des auteurs :
Jacques Faraut 1
@article{10_4064_cm118_1_13,
author = {Jacques Faraut},
title = {Asymptotic spherical analysis on the {Heisenberg} group},
journal = {Colloquium Mathematicum},
pages = {233--258},
publisher = {mathdoc},
volume = {118},
number = {1},
year = {2010},
doi = {10.4064/cm118-1-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-13/}
}
Jacques Faraut. Asymptotic spherical analysis on the Heisenberg group. Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 233-258. doi: 10.4064/cm118-1-13
Cité par Sources :