Analysis on compact Lie groups of large dimension and on connected compact groups
Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 183-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The study of Gaussian convolution semigroups is a subject at the crossroad between abstract and concrete problems in harmonic analysis. This article suggests selected open problems that are in large part motivated by joint work with Alexander Bendikov.
DOI : 10.4064/cm118-1-10
Keywords: study gaussian convolution semigroups subject crossroad between abstract concrete problems harmonic analysis article suggests selected problems large part motivated joint work alexander bendikov

L. Saloff-Coste 1

1 Department of Mathematics Cornell University Ithaca, NY 14853-4201, U.S.A.
@article{10_4064_cm118_1_10,
     author = {L. Saloff-Coste},
     title = {Analysis on compact {Lie} groups of large
 dimension and on connected compact groups},
     journal = {Colloquium Mathematicum},
     pages = {183--199},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {2010},
     doi = {10.4064/cm118-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-10/}
}
TY  - JOUR
AU  - L. Saloff-Coste
TI  - Analysis on compact Lie groups of large
 dimension and on connected compact groups
JO  - Colloquium Mathematicum
PY  - 2010
SP  - 183
EP  - 199
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-10/
DO  - 10.4064/cm118-1-10
LA  - en
ID  - 10_4064_cm118_1_10
ER  - 
%0 Journal Article
%A L. Saloff-Coste
%T Analysis on compact Lie groups of large
 dimension and on connected compact groups
%J Colloquium Mathematicum
%D 2010
%P 183-199
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-10/
%R 10.4064/cm118-1-10
%G en
%F 10_4064_cm118_1_10
L. Saloff-Coste. Analysis on compact Lie groups of large
 dimension and on connected compact groups. Colloquium Mathematicum, Tome 118 (2010) no. 1, pp. 183-199. doi : 10.4064/cm118-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm118-1-10/

Cité par Sources :