Induced subsystems associated to a Cantor minimal system
Colloquium Mathematicum, Tome 117 (2009) no. 2, pp. 207-221
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $(X,T)$ be a Cantor minimal system and let $(R, \mathcal{T})$ be
the associated étale equivalence relation (the orbit equivalence
relation). We show that for an arbitrary Cantor minimal system
$(Y,S)$ there exists a closed subset $Z$ of $X$ such that $(Y,S)$ is
conjugate to the subsystem $(Z,\widetilde{T})$, where
$\widetilde{T}$ is the induced map on $Z$ from $T$. We explore when
we may choose $Z$ to be a $T$-regular and/or a $T$-thin set, and we
relate $T$-regularity of a set to $R$-étaleness. The latter
concept plays an important role in the study of the orbit structure
of minimal $\mathbb{Z}^d$-actions on the Cantor set
by T. Giordans et al. [J. Amer. Math. Soc. 21 (2008)].
Keywords:
cantor minimal system mathcal associated tale equivalence relation orbit equivalence relation arbitrary cantor minimal system there exists closed subset conjugate subsystem widetilde where widetilde induced map explore may choose t regular t thin set relate t regularity set r taleness latter concept plays important role study orbit structure minimal mathbb d actions cantor set giordans amer math soc
Affiliations des auteurs :
Heidi Dahl 1 ; Mats Molberg 2
@article{10_4064_cm117_2_4,
author = {Heidi Dahl and Mats Molberg},
title = {Induced subsystems associated to a {Cantor} minimal system},
journal = {Colloquium Mathematicum},
pages = {207--221},
year = {2009},
volume = {117},
number = {2},
doi = {10.4064/cm117-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-4/}
}
Heidi Dahl; Mats Molberg. Induced subsystems associated to a Cantor minimal system. Colloquium Mathematicum, Tome 117 (2009) no. 2, pp. 207-221. doi: 10.4064/cm117-2-4
Cité par Sources :