Induced subsystems associated to a Cantor minimal system
Colloquium Mathematicum, Tome 117 (2009) no. 2, pp. 207-221.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(X,T)$ be a Cantor minimal system and let $(R, \mathcal{T})$ be the associated étale equivalence relation (the orbit equivalence relation). We show that for an arbitrary Cantor minimal system $(Y,S)$ there exists a closed subset $Z$ of $X$ such that $(Y,S)$ is conjugate to the subsystem $(Z,\widetilde{T})$, where $\widetilde{T}$ is the induced map on $Z$ from $T$. We explore when we may choose $Z$ to be a $T$-regular and/or a $T$-thin set, and we relate $T$-regularity of a set to $R$-étaleness. The latter concept plays an important role in the study of the orbit structure of minimal $\mathbb{Z}^d$-actions on the Cantor set by T. Giordans et al. [J. Amer. Math. Soc. 21 (2008)].
DOI : 10.4064/cm117-2-4
Keywords: cantor minimal system mathcal associated tale equivalence relation orbit equivalence relation arbitrary cantor minimal system there exists closed subset conjugate subsystem widetilde where widetilde induced map explore may choose t regular t thin set relate t regularity set r taleness latter concept plays important role study orbit structure minimal mathbb d actions cantor set giordans amer math soc

Heidi Dahl 1 ; Mats Molberg 2

1 Department of Mathematical Sciences Norwegian University of Science and Technology N-7491 Trondheim, Norway
2 Education and Natural Sciences Hedemark University College N-2418 Elverum, Norway
@article{10_4064_cm117_2_4,
     author = {Heidi Dahl and Mats Molberg},
     title = {Induced subsystems associated to a {Cantor} minimal system},
     journal = {Colloquium Mathematicum},
     pages = {207--221},
     publisher = {mathdoc},
     volume = {117},
     number = {2},
     year = {2009},
     doi = {10.4064/cm117-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-4/}
}
TY  - JOUR
AU  - Heidi Dahl
AU  - Mats Molberg
TI  - Induced subsystems associated to a Cantor minimal system
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 207
EP  - 221
VL  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-4/
DO  - 10.4064/cm117-2-4
LA  - en
ID  - 10_4064_cm117_2_4
ER  - 
%0 Journal Article
%A Heidi Dahl
%A Mats Molberg
%T Induced subsystems associated to a Cantor minimal system
%J Colloquium Mathematicum
%D 2009
%P 207-221
%V 117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-4/
%R 10.4064/cm117-2-4
%G en
%F 10_4064_cm117_2_4
Heidi Dahl; Mats Molberg. Induced subsystems associated to a Cantor minimal system. Colloquium Mathematicum, Tome 117 (2009) no. 2, pp. 207-221. doi : 10.4064/cm117-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-4/

Cité par Sources :