A note on global integrability of upper gradients
of $p$-superharmonic functions
Colloquium Mathematicum, Tome 117 (2009) no. 2, pp. 281-288
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a complete metric space equipped with a doubling measure and a weak Poincaré inequality. We prove that for all $p$-superharmonic functions there exists an upper gradient that is integrable on $H$-chain sets with a positive exponent.
Keywords:
consider complete metric space equipped doubling measure weak poincar inequality prove p superharmonic functions there exists upper gradient integrable h chain sets positive exponent
Affiliations des auteurs :
Outi Elina Maasalo 1 ; Anna Zatorska-Goldstein 2
@article{10_4064_cm117_2_10,
author = {Outi Elina Maasalo and Anna Zatorska-Goldstein},
title = {A note on global integrability of upper gradients
of $p$-superharmonic functions},
journal = {Colloquium Mathematicum},
pages = {281--288},
year = {2009},
volume = {117},
number = {2},
doi = {10.4064/cm117-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-10/}
}
TY - JOUR AU - Outi Elina Maasalo AU - Anna Zatorska-Goldstein TI - A note on global integrability of upper gradients of $p$-superharmonic functions JO - Colloquium Mathematicum PY - 2009 SP - 281 EP - 288 VL - 117 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-10/ DO - 10.4064/cm117-2-10 LA - en ID - 10_4064_cm117_2_10 ER -
%0 Journal Article %A Outi Elina Maasalo %A Anna Zatorska-Goldstein %T A note on global integrability of upper gradients of $p$-superharmonic functions %J Colloquium Mathematicum %D 2009 %P 281-288 %V 117 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-10/ %R 10.4064/cm117-2-10 %G en %F 10_4064_cm117_2_10
Outi Elina Maasalo; Anna Zatorska-Goldstein. A note on global integrability of upper gradients of $p$-superharmonic functions. Colloquium Mathematicum, Tome 117 (2009) no. 2, pp. 281-288. doi: 10.4064/cm117-2-10
Cité par Sources :