On an integral of fractional power operators
Colloquium Mathematicum, Tome 117 (2009) no. 2, pp. 157-164.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a bounded and sectorial linear operator $V$ in a Banach space, with spectrum in the open unit disc, we study the operator $\widetilde{V} = \int_0^{\infty} d\alpha\, V^{\alpha}$. We show, for example, that $\widetilde{V}$ is sectorial, and asymptotically of type $0$. If $V$ has single-point spectrum $\{0\}$, then $\widetilde{V}$ is of type $0$ with a single-point spectrum, and the operator $I-\widetilde{V}$ satisfies the Ritt resolvent condition. These results generalize an example of Lyubich, who studied the case where $V$ is a classical Volterra operator.
DOI : 10.4064/cm117-2-1
Keywords: bounded sectorial linear operator banach space spectrum unit disc study operator widetilde int infty alpha alpha example widetilde sectorial asymptotically type has single point spectrum nbsp widetilde type single point spectrum operator i widetilde satisfies ritt resolvent condition these results generalize example lyubich who studied where classical volterra operator

Nick Dungey 1

1 Department of Mathematics Macquarie University Sydney, NSW 2109, Australia
@article{10_4064_cm117_2_1,
     author = {Nick Dungey},
     title = {On an integral of fractional power operators},
     journal = {Colloquium Mathematicum},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {117},
     number = {2},
     year = {2009},
     doi = {10.4064/cm117-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-1/}
}
TY  - JOUR
AU  - Nick Dungey
TI  - On an integral of fractional power operators
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 157
EP  - 164
VL  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-1/
DO  - 10.4064/cm117-2-1
LA  - en
ID  - 10_4064_cm117_2_1
ER  - 
%0 Journal Article
%A Nick Dungey
%T On an integral of fractional power operators
%J Colloquium Mathematicum
%D 2009
%P 157-164
%V 117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-1/
%R 10.4064/cm117-2-1
%G en
%F 10_4064_cm117_2_1
Nick Dungey. On an integral of fractional power operators. Colloquium Mathematicum, Tome 117 (2009) no. 2, pp. 157-164. doi : 10.4064/cm117-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm117-2-1/

Cité par Sources :