On the ergodic decomposition for a cocycle
Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 121-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(X, {\mathfrak X}, \mu, \tau)$ be an ergodic dynamical system and $\varphi$ be a measurable map from $X$ to a locally compact second countable group $G$ with left Haar measure $m_G$. We consider the map $\tau_\varphi$ defined on $X \times G$ by $\tau_\varphi: (x,g) \mapsto (\tau x, \varphi(x)g)$ and the cocycle $(\varphi_n)_{n \in \mathbb{Z}}$ generated by $\varphi$.Using a characterization of the ergodic invariant measures for $\tau_\varphi$, we give the form of the ergodic decomposition of $\mu(dx) \otimes m_G(dg)$ or more generally of the $\tau_\varphi$-invariant measures $\mu_\chi(dx) \otimes \chi(g) m_G(dg)$, where $\mu_\chi(dx)$ is $\chi\circ \varphi$-conformal for an exponential $\chi$ on $G$.
DOI : 10.4064/cm117-1-8
Keywords: mathfrak tau ergodic dynamical system varphi measurable map locally compact second countable group haar measure consider map tau varphi defined times tau varphi mapsto tau varphi cocycle varphi mathbb generated nbsp varphi using characterization ergodic invariant measures tau varphi form ergodic decomposition otimes generally tau varphi invariant measures chi otimes chi where chi chi circ varphi conformal exponential chi nbsp

Jean-Pierre Conze 1 ; Albert Raugi 2

1 IRMAR, CNRS UMR 6625 Université de Rennes I Campus de Beaulieu 35042 Rennes Cedex, France
2 Université de Rennes I Campus de Beaulieu 35042 Rennes Cedex, France
@article{10_4064_cm117_1_8,
     author = {Jean-Pierre Conze and Albert Raugi},
     title = {On the ergodic decomposition for a cocycle},
     journal = {Colloquium Mathematicum},
     pages = {121--156},
     publisher = {mathdoc},
     volume = {117},
     number = {1},
     year = {2009},
     doi = {10.4064/cm117-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-8/}
}
TY  - JOUR
AU  - Jean-Pierre Conze
AU  - Albert Raugi
TI  - On the ergodic decomposition for a cocycle
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 121
EP  - 156
VL  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-8/
DO  - 10.4064/cm117-1-8
LA  - en
ID  - 10_4064_cm117_1_8
ER  - 
%0 Journal Article
%A Jean-Pierre Conze
%A Albert Raugi
%T On the ergodic decomposition for a cocycle
%J Colloquium Mathematicum
%D 2009
%P 121-156
%V 117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-8/
%R 10.4064/cm117-1-8
%G en
%F 10_4064_cm117_1_8
Jean-Pierre Conze; Albert Raugi. On the ergodic decomposition for a cocycle. Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 121-156. doi : 10.4064/cm117-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-8/

Cité par Sources :