On a subclass of the family of Darboux functions
Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 95-104.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate functions $f:I\to \mathbb R$ (where $I$ is an open interval) such that for all $u,v\in I$ with $u v$ and $f(u)\neq f(v)$ and each $c\in (\min(f(u),f(v)),\max(f(u),f(v)))$ there is a point $w\in (u,v)$ such that $f(w) = c$ and $f$ is approximately continuous at $w$.
DOI : 10.4064/cm117-1-6
Keywords: investigate functions mathbb where interval neq each min max there point approximately continuous nbsp

Zbigniew Grande 1

1 Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland
@article{10_4064_cm117_1_6,
     author = {Zbigniew Grande},
     title = {On a subclass of the family of {Darboux} functions},
     journal = {Colloquium Mathematicum},
     pages = {95--104},
     publisher = {mathdoc},
     volume = {117},
     number = {1},
     year = {2009},
     doi = {10.4064/cm117-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-6/}
}
TY  - JOUR
AU  - Zbigniew Grande
TI  - On a subclass of the family of Darboux functions
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 95
EP  - 104
VL  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-6/
DO  - 10.4064/cm117-1-6
LA  - en
ID  - 10_4064_cm117_1_6
ER  - 
%0 Journal Article
%A Zbigniew Grande
%T On a subclass of the family of Darboux functions
%J Colloquium Mathematicum
%D 2009
%P 95-104
%V 117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-6/
%R 10.4064/cm117-1-6
%G en
%F 10_4064_cm117_1_6
Zbigniew Grande. On a subclass of the family of Darboux functions. Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 95-104. doi : 10.4064/cm117-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-6/

Cité par Sources :