On a subclass of the family of Darboux functions
Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 95-104
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate functions $f:I\to \mathbb R$ (where $I$ is an open interval) such that for all $u,v\in I$ with $u v$ and $f(u)\neq f(v)$ and each $c\in (\min(f(u),f(v)),\max(f(u),f(v)))$
there is a point $w\in (u,v)$ such that $f(w) = c$ and $f$ is approximately continuous at $w$.
Keywords:
investigate functions mathbb where interval neq each min max there point approximately continuous nbsp
Affiliations des auteurs :
Zbigniew Grande 1
@article{10_4064_cm117_1_6,
author = {Zbigniew Grande},
title = {On a subclass of the family of {Darboux} functions},
journal = {Colloquium Mathematicum},
pages = {95--104},
publisher = {mathdoc},
volume = {117},
number = {1},
year = {2009},
doi = {10.4064/cm117-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-6/}
}
Zbigniew Grande. On a subclass of the family of Darboux functions. Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 95-104. doi: 10.4064/cm117-1-6
Cité par Sources :