Testing flatness and computing rank of a
module using syzygies
Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 65-79
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using syzygies computed via Gröbner bases techniques, we present algorithms for testing some homological properties for submodules of the free module $A^m$, where $A=R[x_1,\dots,x_n]$ and $R$ is a Noetherian commutative ring. We will test if a given submodule $M$ of $A^m$ is flat. We will also check if $M$ is locally free of constant dimension. Moreover, we present an algorithm that computes the rank of a flat submodule $M$ of $A^m$ and also an algorithm that computes the projective dimension of an arbitrary submodule of $A^m$. All algorithms are illustrated with examples.
Keywords:
using syzygies computed via bner bases techniques present algorithms testing homological properties submodules module where dots noetherian commutative ring test given submodule flat check locally constant dimension moreover present algorithm computes rank flat submodule algorithm computes projective dimension arbitrary submodule algorithms illustrated examples
Affiliations des auteurs :
Oswaldo Lezama 1
@article{10_4064_cm117_1_4,
author = {Oswaldo Lezama},
title = {Testing flatness and computing rank of a
module using syzygies},
journal = {Colloquium Mathematicum},
pages = {65--79},
year = {2009},
volume = {117},
number = {1},
doi = {10.4064/cm117-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-4/}
}
Oswaldo Lezama. Testing flatness and computing rank of a module using syzygies. Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 65-79. doi: 10.4064/cm117-1-4
Cité par Sources :