Square subgroups of rank two abelian groups
Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 19-28
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be an abelian group and $\square G$ its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group $G$ of rank two is a pure subgroup of $G$ and that $G/{\square G} $ is a nil group.
Keywords:
abelian group square its square subgroup defined introduction square subgroup non homogeneous indecomposable torsion free group rank pure subgroup square nil group
Affiliations des auteurs :
A. M. Aghdam 1 ; A. Najafizadeh 1
@article{10_4064_cm117_1_2,
author = {A. M. Aghdam and A. Najafizadeh},
title = {Square subgroups of rank two abelian groups},
journal = {Colloquium Mathematicum},
pages = {19--28},
publisher = {mathdoc},
volume = {117},
number = {1},
year = {2009},
doi = {10.4064/cm117-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-2/}
}
A. M. Aghdam; A. Najafizadeh. Square subgroups of rank two abelian groups. Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 19-28. doi: 10.4064/cm117-1-2
Cité par Sources :