Square subgroups of rank two abelian groups
Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 19-28.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be an abelian group and $\square G$ its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group $G$ of rank two is a pure subgroup of $G$ and that $G/{\square G} $ is a nil group.
DOI : 10.4064/cm117-1-2
Keywords: abelian group square its square subgroup defined introduction square subgroup non homogeneous indecomposable torsion free group rank pure subgroup square nil group

A. M. Aghdam 1 ; A. Najafizadeh 1

1 Department of Mathematics University of Tabriz Tabriz, Iran
@article{10_4064_cm117_1_2,
     author = {A. M. Aghdam and A. Najafizadeh},
     title = {Square subgroups of rank two abelian groups},
     journal = {Colloquium Mathematicum},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {117},
     number = {1},
     year = {2009},
     doi = {10.4064/cm117-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-2/}
}
TY  - JOUR
AU  - A. M. Aghdam
AU  - A. Najafizadeh
TI  - Square subgroups of rank two abelian groups
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 19
EP  - 28
VL  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-2/
DO  - 10.4064/cm117-1-2
LA  - en
ID  - 10_4064_cm117_1_2
ER  - 
%0 Journal Article
%A A. M. Aghdam
%A A. Najafizadeh
%T Square subgroups of rank two abelian groups
%J Colloquium Mathematicum
%D 2009
%P 19-28
%V 117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-2/
%R 10.4064/cm117-1-2
%G en
%F 10_4064_cm117_1_2
A. M. Aghdam; A. Najafizadeh. Square subgroups of rank two abelian groups. Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 19-28. doi : 10.4064/cm117-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-2/

Cité par Sources :